🔢

Exponents Simplification and Rules

May 1, 2025

Lecture on Simplifying Exponents

Basic Properties of Exponents

  • Addition of Exponents:

    • When multiplying with the same base, add the exponents.
    • Example: ( x^4 \times x^5 = x^{4+5} = x^9 ).
  • Subtraction of Exponents:

    • When dividing with the same base, subtract the exponents.
    • Example: ( \frac{x^7}{x^3} = x^{7-3} = x^4 ).
  • Power of a Power:

    • When raising an exponent to another power, multiply the exponents.
    • Example: ( (x^3)^4 = x^{3 \times 4} = x^{12} ).
  • Zero Exponent Rule:

    • Any number raised to the power of zero is 1.
    • Example: ( x^0 = 1 ).
  • Negative Exponents:

    • A negative exponent indicates reciprocal.
    • Example: ( x^{-3} = \frac{1}{x^3} ).

Simplifying Expressions with Exponents

  • Example 1:

    • ( -3^2 ) vs ( (-3)^2 )
      • ( -3^2 = -9 ) because the negative is not squared.
      • ( (-3)^2 = 9 ) because both the negative and the base are squared.
  • Example 2:

    • Simplify ( (3x^2)^3 )
      • Distribute the power: ( 3^3 \times x^{2 \times 3} = 27x^6 ).
  • Example 3:

    • Simplify ( (-2x^3y^4)^2 )
      • Distribute the power: ( (-2)^2 \times x^{3 \times 2} \times y^{4 \times 2} = 4x^6y^8 ).

Practice Problems

  • Problem 1: Multiply ( 5x^3 \times 4x^7 )

    • Solution: ( 5 \times 4 \times x^{3+7} = 20x^{10} ).
  • Problem 2: Simplify ( \frac{24x^7y^3}{8x^4y^{-2}} )

    • Solution:
      • Divide coefficients: ( 24 / 8 = 3 ).
      • Subtract exponents: ( x^{7-4} = x^3 ), ( y^{3-(-2)} = y^5 ).
      • Final answer: ( 3x^3y^5 ).
  • Problem 3: Simplify ( \frac{35x^3y^5}{63x^4y^7} ) squared

    • Simplification:
      • Pre-simplify: ( \frac{35}{63} = \frac{5}{9} ).
      • Exponents: ( x^{3-4} = x^{-1} ) and ( y^{5-7} = y^{-2} ).
      • Move negative exponents: ( \frac{5}{9x^1y^2} ).
      • Square the expression: ( \left(\frac{5}{9x^1y^2}\right)^2 = \frac{25}{81x^2y^4} ).

Conclusion

  • Understanding exponent rules is crucial for simplifying algebraic expressions.
  • Practice these principles with various problems to strengthen comprehension.