Coconote
AI notes
AI voice & video notes
Try for free
📈
Understanding Exponential Functions and Graphs
May 5, 2025
Graphing Exponential Functions
Key Concepts
Exponential Functions
: Functions of the form ( a^x ) where ( a ) is a constant.
Horizontal Asymptote
: The line ( y = \text{constant} ) that the graph approaches but never touches.
Domain
: All real numbers for exponential functions.
Range
: Depends on the horizontal asymptote; typically ((0, \infty)) or ((a, \infty)) where ( a ) is the horizontal asymptote.
Example 1: Basic Exponential Function
Function
: ( f(x) = 2^x )
Points
:
( (0, 1) ) (\rightarrow) y-intercept
( (1, 2) )
Graph
:
Starts from the horizontal asymptote at the x-axis (( y = 0 )) and increases.
Domain
: All real numbers
Range
: ( (0, \infty) )
Example 2: Fractional Base
Function
: ( f(x) = \left(\frac{1}{3}\right)^x )
Change to
: ( f(x) = 3^{-x} )
Points
:
( (0, 1) ) (\rightarrow) y-intercept
( (-1, 3) )
Graph
:
Starts from the horizontal asymptote at ( y = 0 ) and increases towards the plotted points.
Domain
: All real numbers
Range
: ( (0, \infty) )
Example 3: Shifted Exponential Function
Function
: ( f(x) = 3^{x-2} + 1 )
Horizontal Asymptote
: ( y = 1 )
Points
:
( (2, 2) )
( (3, 4) )
Graph
:
Starts from the horizontal asymptote (( y = 1 )) and increases.
Domain
: All real numbers
Range
: ( (1, \infty) )
Example 4: Decreasing Exponential Function
Function
: ( f(x) = 5 - 2^{3-x} )
Horizontal Asymptote
: ( y = 5 )
Points
:
( (2, 3) )
( (3, 4) )
Graph
:
Starts from the horizontal asymptote (( y = 5 )) and decreases.
Domain
: All real numbers
Range
: ( (-\infty, 5) )
Graph Reflections and Quadrants
2^x
: Increases in Quadrant I.
2^{-x}
: Reflects over the y-axis, increases in Quadrant II.
-2^x
: Reflects over the x-axis, increases in Quadrant IV.
-2^{-x}
: Reflects across the origin, increases in Quadrant III.
Summary
Use the structure and transformations of the function to determine key points and asymptotes.
Domain is always all real numbers.
Range is determined by the horizontal asymptote.
Consider reflections and shifts in determining the graph's path through quadrants.
📄
Full transcript