🌀

The Circle of Unity and the Fundamentals of Triangles

Oct 3, 2024

# Overview of the Unit Circle and Trigonometry ## Quadrants in the Unit Circle - **First Quadrant:** All functions are positive (All Students Take Calculus) - **Second Quadrant:** Sine is positive - **Third Quadrant:** Tangent is positive - **Fourth Quadrant:** Cosine is positive ## Major Angles in Degrees and Radians - **0° (0):** (1, 0) - **30° (π/6):** (√3/2, 1/2) - **45° (π/4):** (√2/2, √2/2) - **60° (π/3):** (1/2, √3/2) - **90° (π/2):** (0, 1) - **180° (π):** (-1, 0) - **270° (3π/2):** (0, -1) - **360° (2π):** (1, 0) ## Reference Angles Values - **Reference Angle for 30°:** 30° - Second Quadrant (150°): (-√3/2, 1/2) - Third Quadrant (210°): (-√3/2, -1/2) - Fourth Quadrant (330°): (√3/2, -1/2) - **Reference Angle for 45°:** 45° - Second Quadrant (135°): (-√2/2, √2/2) - Third Quadrant (225°): (-√2/2, -√2/2) - Fourth Quadrant (315°): (√2/2, -√2/2) - **Reference Angle for 60°:** 60° - Second Quadrant (120°): (-1/2, √3/2) - Third Quadrant (240°): (-1/2, -√3/2) - Fourth Quadrant (300°): (1/2, -√3/2) ## Evaluating Trigonometric Functions Using the Unit Circle - **Sine and Cosine:** Use Y and X values respectively from the unit circle - Example: - Sine 60° = √3/2 - Cosine 60° = 1/2 - Tangent 60° = (√3/2) / (1/2) = √3 ## Special Triangles - **30-60-90 Triangle:** - Opposite side (30°): 1, Adjacent side (60°): √3, Hypotenuse: 2 - **45-45-90 Triangle:** - Opposite side (45°): 1, Hypotenuse: √2 ## Reference Angles for Other Quadrants - **Second Quadrant:** Reference angle = 180° - angle - **Third Quadrant:** Reference angle = angle - 180° - **Fourth Quadrant:** Reference angle = 360° - angle ## Inverse Trigonometric Functions - **Inverse Sine (sin⁻¹):** Range between -90° and 90° (First and Fourth quadrants) - **Inverse Cosine (cos⁻¹):** Range between 0° and 180° (First and Second quadrants) - **Inverse Tangent (tan⁻¹):** Range between -90° and 90° (First and Fourth quadrants) ## Evaluating Examples - **Evaluate sin 150° (Inverse):** - sin 150° = 1/2 - sin⁻¹(1/2) = 30° - **Evaluate cos 330° (Inverse):** - cos 330° = √3/2 - cos⁻¹(√3/2) = 30° - **Evaluate tan 90°:** Undefined (because cos 90° = 0) ## Additional Examples - **Finding Other Trigonometric Functions from Sine:** - If sin θ = 3/5, use the Pythagorean theorem to find the adjacent side and evaluate cosine, tangent, secant, cosecant, and cotangent. - **Finding Trigonometric Functions in Different Quadrants:** - Use the Pythagorean theorem and special triangles to derive the missing sides and values. - **Understanding Restrictions of Inverse Functions:** - Sine and tangent are restricted to the first and fourth quadrants, while cosine is restricted to the first and second quadrants.