Coconote
AI notes
AI voice & video notes
Try for free
📊
Graphing and Transforming Radical Equations
Oct 1, 2024
Notes on Graphing Radical Equations
Introduction to Radical Equations
Focus: Graphing radical equations
Starting with the parent function:
[ y = \sqrt{x} ]
Characteristics of the graph:
Starts at the origin (0,0)
Increases at a decreasing rate
Domain and Range of y = √x
Domain
:
Lowest x-value: 0
Highest x-value: ∞
Domain: [0, ∞)
Range
:
Lowest y-value: 0
Highest y-value: ∞
Range:
0, ∞)
Transformations of the Parent Function
Negative Square Roots
y = -√x
: Reflects over the x-axis
y = √-x
: Reflects over the y-axis
y = -√-x
: Reflects over the origin
Quadrant Analysis for Transformations
Helps determine direction of graphs:
Positive x & y: Quadrant I
Positive x & Negative y: Quadrant IV
Negative x & Positive y: Quadrant II
Negative x & Negative y: Quadrant III
Vertical and Horizontal Shifts
Vertical Shifts
:
Adding to the function shifts it up
Subtracting from the function shifts it down
Example:
y = √x + 2: Starts 2 units above x-axis
y = √x - 1: Shifts down 1 unit
Horizontal Shifts
:
Inside the radical affects x values
Example:
y = √(x - 2): Shifts right 2 units
y = √(x + 3): Shifts left 3 units
Graphing with Points
Finding Points
:
Start at the origin (0,0)
Next points:
√1 = 1: (1,1)
√4 = 2: (4,2)
√9 = 3: (9,3)
Vertical Stretch
:
Example Function:
y = 2√x
Points from parent function double y-values
Translates to (1,2), (4,4), etc.
Example Function Analysis
Function
: y = √(x - 1) + 2
New Origin
: (1, 2)
Find points:
(1,2), (2,3), (5,4)
Domain
:
Lowest x value: 1
Domain: [1, ∞)
Range
:
Lowest y-value: 2
Range:
2, ∞)
Graphing Another Example Function
Function
: y = 3 - √(x - 4)
Transformations
:
Shifted 4 units right and 3 units up
New Origin
: (4, 3)
Points
:
(5, 2), (8, 1)
Domain
:
Lowest x-value: 4
Domain: [4, ∞)
Range
:
Highest y-value: 3
Range: (-∞, 3]
Conclusion
Understanding transformations and shifts is crucial for graphing radical equations effectively.
📄
Full transcript