📊

Graphing and Transforming Radical Equations

Oct 1, 2024

Notes on Graphing Radical Equations

Introduction to Radical Equations

  • Focus: Graphing radical equations
  • Starting with the parent function:
    [ y = \sqrt{x} ]
  • Characteristics of the graph:
    • Starts at the origin (0,0)
    • Increases at a decreasing rate

Domain and Range of y = √x

  • Domain:
    • Lowest x-value: 0
    • Highest x-value: ∞
    • Domain: [0, ∞)
  • Range:
    • Lowest y-value: 0
    • Highest y-value: ∞
    • Range: 0, ∞)

Transformations of the Parent Function

Negative Square Roots

  • y = -√x: Reflects over the x-axis
  • y = √-x: Reflects over the y-axis
  • y = -√-x: Reflects over the origin

Quadrant Analysis for Transformations

  • Helps determine direction of graphs:
    • Positive x & y: Quadrant I
    • Positive x & Negative y: Quadrant IV
    • Negative x & Positive y: Quadrant II
    • Negative x & Negative y: Quadrant III

Vertical and Horizontal Shifts

  • Vertical Shifts:
    • Adding to the function shifts it up
    • Subtracting from the function shifts it down
    • Example:
      • y = √x + 2: Starts 2 units above x-axis
      • y = √x - 1: Shifts down 1 unit
  • Horizontal Shifts:
    • Inside the radical affects x values
    • Example:
      • y = √(x - 2): Shifts right 2 units
      • y = √(x + 3): Shifts left 3 units

Graphing with Points

  • Finding Points:
    • Start at the origin (0,0)
    • Next points:
      • √1 = 1: (1,1)
      • √4 = 2: (4,2)
      • √9 = 3: (9,3)
  • Vertical Stretch:
    • Example Function:
      • y = 2√x
      • Points from parent function double y-values
      • Translates to (1,2), (4,4), etc.

Example Function Analysis

  • Function: y = √(x - 1) + 2
  • New Origin: (1, 2)
    • Find points:
      • (1,2), (2,3), (5,4)
  • Domain:
    • Lowest x value: 1
    • Domain: [1, ∞)
  • Range:

Graphing Another Example Function

  • Function: y = 3 - √(x - 4)
  • Transformations:
    • Shifted 4 units right and 3 units up
  • New Origin: (4, 3)
  • Points:
    • (5, 2), (8, 1)
  • Domain:
    • Lowest x-value: 4
    • Domain: [4, ∞)
  • Range:
    • Highest y-value: 3
    • Range: (-∞, 3]

Conclusion

  • Understanding transformations and shifts is crucial for graphing radical equations effectively.