Mastering Addition and Subtraction of Fractions

Aug 22, 2024

Lecture Notes: Adding and Subtracting Fractions

Key Concepts

  • Common Denominator: Essential for adding or subtracting fractions. Fractions must have the same denominator to be combined.
  • Least Common Denominator (LCD): Ideally, use the smallest common multiple of the denominators.
  • Equivalent Fractions: Fractions with different numerators and denominators but represent the same value.

Process for Adding/Subtracting Fractions

  1. Find a Common Denominator: Ensure fractions have the same denominator.
    • Multiply fractions to achieve a common denominator.
    • Preferably use the least common denominator.
  2. Perform the Operation: Add or subtract the numerators.
    • Keep the denominator the same.
  3. Simplify the Result: Check if the resulting fraction can be simplified.

Example Problems

Example 1: Adding Fractions

  • Problem: (\frac{1}{2} + \frac{1}{4})
    • Least Common Denominator: 4.
    • Convert (\frac{1}{2}) to (\frac{2}{4}).
    • Add: (\frac{2}{4} + \frac{1}{4} = \frac{3}{4}).

Example 2: Common Error

  • Error: Adding numerators and denominators directly.
    • Incorrect: (\frac{1}{2} + \frac{1}{4} = \frac{2}{6}).
    • Correct: Use common denominator.

Example 3: Adding with Different Denominators

  • Problem: (\frac{1}{4} + \frac{5}{8})
    • LCD: 8.
    • Convert (\frac{1}{4}) to (\frac{2}{8}).
    • Add: (\frac{2}{8} + \frac{5}{8} = \frac{7}{8}).

Example 4: Subtracting Fractions

  • Problem: (\frac{5}{6} - \frac{5}{12})
    • LCD: 12.
    • Convert (\frac{5}{6}) to (\frac{10}{12}).
    • Subtract: (\frac{10}{12} - \frac{5}{12} = \frac{5}{12}).

Example 5: Improper Fractions

  • Problem: (\frac{5}{7} + \frac{3}{5})
    • LCD: 35.
    • Convert (\frac{5}{7}) to (\frac{25}{35}) and (\frac{3}{5}) to (\frac{21}{35}).
    • Add: (\frac{25}{35} + \frac{21}{35} = \frac{46}{35}).
    • Convert to Mixed Number: 1 (\frac{11}{35}).

Example 6: Subtracting with Different Denominators

  • Problem: (\frac{1}{3} - \frac{1}{4})
    • LCD: 12.
    • Convert (\frac{1}{3}) to (\frac{4}{12}) and (\frac{1}{4}) to (\frac{3}{12}).
    • Subtract: (\frac{4}{12} - \frac{3}{12} = \frac{1}{12}).

Conclusion

  • Always use a common denominator to add or subtract fractions.
  • Simplify answers where possible.
  • Convert improper fractions to mixed numbers if required.

These notes aim to provide a comprehensive overview of the process for adding and subtracting fractions while highlighting common errors and best practices.