Lecture Notes: Adding and Subtracting Fractions
Key Concepts
- Common Denominator: Essential for adding or subtracting fractions. Fractions must have the same denominator to be combined.
- Least Common Denominator (LCD): Ideally, use the smallest common multiple of the denominators.
- Equivalent Fractions: Fractions with different numerators and denominators but represent the same value.
Process for Adding/Subtracting Fractions
- Find a Common Denominator: Ensure fractions have the same denominator.
- Multiply fractions to achieve a common denominator.
- Preferably use the least common denominator.
- Perform the Operation: Add or subtract the numerators.
- Keep the denominator the same.
- Simplify the Result: Check if the resulting fraction can be simplified.
Example Problems
Example 1: Adding Fractions
- Problem: (\frac{1}{2} + \frac{1}{4})
- Least Common Denominator: 4.
- Convert (\frac{1}{2}) to (\frac{2}{4}).
- Add: (\frac{2}{4} + \frac{1}{4} = \frac{3}{4}).
Example 2: Common Error
- Error: Adding numerators and denominators directly.
- Incorrect: (\frac{1}{2} + \frac{1}{4} = \frac{2}{6}).
- Correct: Use common denominator.
Example 3: Adding with Different Denominators
- Problem: (\frac{1}{4} + \frac{5}{8})
- LCD: 8.
- Convert (\frac{1}{4}) to (\frac{2}{8}).
- Add: (\frac{2}{8} + \frac{5}{8} = \frac{7}{8}).
Example 4: Subtracting Fractions
- Problem: (\frac{5}{6} - \frac{5}{12})
- LCD: 12.
- Convert (\frac{5}{6}) to (\frac{10}{12}).
- Subtract: (\frac{10}{12} - \frac{5}{12} = \frac{5}{12}).
Example 5: Improper Fractions
- Problem: (\frac{5}{7} + \frac{3}{5})
- LCD: 35.
- Convert (\frac{5}{7}) to (\frac{25}{35}) and (\frac{3}{5}) to (\frac{21}{35}).
- Add: (\frac{25}{35} + \frac{21}{35} = \frac{46}{35}).
- Convert to Mixed Number: 1 (\frac{11}{35}).
Example 6: Subtracting with Different Denominators
- Problem: (\frac{1}{3} - \frac{1}{4})
- LCD: 12.
- Convert (\frac{1}{3}) to (\frac{4}{12}) and (\frac{1}{4}) to (\frac{3}{12}).
- Subtract: (\frac{4}{12} - \frac{3}{12} = \frac{1}{12}).
Conclusion
- Always use a common denominator to add or subtract fractions.
- Simplify answers where possible.
- Convert improper fractions to mixed numbers if required.
These notes aim to provide a comprehensive overview of the process for adding and subtracting fractions while highlighting common errors and best practices.