📐

Kramer's Rule for Linear Equations

Oct 21, 2024

Kramer's Rule Lecture Notes

Overview

  • Kramer's Rule is a method for solving systems of linear equations using determinants.
  • Can be applied to systems with two variables and three variables.

Two-Variable System

  • Equations:
    • Equation 1: a1x + b1y = c1
    • Equation 2: a2x + b2y = c2

Key Formulas

  • Determinant (D):
    [ D = a1 \cdot b2 - a2 \cdot b1 ]

  • Values of x and y:

    • [ x = \frac{D_x}{D} ]
    • [ y = \frac{D_y}{D} ]

Calculation Steps

  1. Find D:

    • Use the coefficients from the left side:
      • [ D = \begin{vmatrix} a1 & b1 \\ a2 & b2 \end{vmatrix} = a1 \cdot b2 - a2 \cdot b1 ]
  2. Find D_x:

    • Replace coefficients of x with c1 and c2:
      • [ D_x = \begin{vmatrix} c1 & b1 \\ c2 & b2 \end{vmatrix} = c1 \cdot b2 - c2 \cdot b1 ]
  3. Find D_y:

    • Replace coefficients of y with c1 and c2:
      • [ D_y = \begin{vmatrix} a1 & c1 \\ a2 & c2 \end{vmatrix} = a1 \cdot c2 - a2 \cdot c1 ]

Example 1

  • Given equations:

    1. 2x + 3y = 13
    2. 3x - 5y = -9
  • Calculate D:

    • [ D = 2 \cdot (-5) - 3 \cdot 3 = -10 - 9 = -19 ]
  • Calculate D_x:

    • [ D_x = \begin{vmatrix} 13 & 3 \\ -9 & -5 \end{vmatrix} = (13 \cdot -5) - (-9 \cdot 3) = -65 + 27 = -38 ]
  • Calculate D_y:

    • [ D_y = \begin{vmatrix} 2 & 13 \\ 3 & -9 \end{vmatrix} = (2 \cdot -9) - (3 \cdot 13) = -18 - 39 = -57 ]
  • Final Values:

    • [ x = \frac{D_x}{D} = \frac{-38}{-19} = 2 ]
    • [ y = \frac{D_y}{D} = \frac{-57}{-19} = 3 ]

Verification

  • Plugging values back to original equations confirms the solution is correct.

Three-Variable System

  • Equations:
    • General form:
      [ a1x + b1y + c1z = d1 ]
      [ a2x + b2y + c2z = d2 ]
      [ a3x + b3y + c3z = d3 ]

Key Formulas for 3 Variables

  • Determinant (D):

    • Coefficient matrix: [ D = \begin{vmatrix} a1 & b1 & c1 \\ a2 & b2 & c2 \\ a3 & b3 & c3 \end{vmatrix} ]
  • Values of x, y, and z:

    • [ x = \frac{D_x}{D}, y = \frac{D_y}{D}, z = \frac{D_z}{D} ]

Calculation Steps for 3 Variables

  1. Calculate D using a 3x3 matrix determinant.
  2. Calculate D_x, D_y, D_z similarly, replacing the appropriate columns with the constants from the equation.

Example 2

  • Given equations:

    1. 3x - 2y + z = 2
    2. 4x + 3y - 2z = 4
    3. 5x - 3y + 3z = 8
  • Final Values:

    • After calculating all determinants, the values are:
      • x = 1, y = 2, z = 3

Verification

  • Check values in original equations to confirm accuracy.

Conclusion

  • Kramer's Rule is a systematic way to solve systems of equations, especially useful in certain educational contexts.
  • Requires careful calculation of determinants, highlighting the importance of accuracy in each step.