Coconote
AI notes
AI voice & video notes
Try for free
⚪
Finding Circle Equation from Diameter
Feb 18, 2025
Lecture Notes: Equation of a Circle with Diameter Endpoints
Key Concepts
Equation of a Circle
:
Formula: ( (x - h)^2 + (y - k)^2 = r^2 )
( h, k ) represents the center coordinates (( h = x ) value, ( k = y ) value)
( r ) is the radius of the circle
Problem Overview
Given endpoints of a diameter: (2, 3) and (-4, -5)
Goal: Find the equation of the circle
Solution Steps
1. Find the Center of the Circle
Midpoint Formula
: Used to find the center of the circle
Formula: ( \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) )
Calculation:
Midpoint ( = \left( \frac{2 + (-4)}{2}, \frac{3 + (-5)}{2} \right) )
( = \left( \frac{-2}{2}, \frac{-2}{2} \right) )
( = (-1, -1) )
Result: Center ( (h, k) = (-1, -1) )
2. Determine the Radius
Radius Options
:
Distance from center to a point on the circle
Half the length of the diameter
Distance Formula
: Used for calculating distance between the center and one endpoint
Formula: ( \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} )
Calculation:
Endpoints: Center ((-1, -1)) and a point (2, 3)
( = \sqrt{(2 - (-1))^2 + (3 - (-1))^2} )
( = \sqrt{(3)^2 + (4)^2} )
( = \sqrt{9 + 16} )
( = \sqrt{25} )
( = 5 )
Result: Radius ( r = 5 )
3. Write the Equation of the Circle
Substitute ( h, k, ) and ( r ) into the circle equation
Simplification Steps:
((x - (-1))^2 + (y - (-1))^2 = 5^2)
((x + 1)^2 + (y + 1)^2 = 25)
Final Equation
: ((x + 1)^2 + (y + 1)^2 = 25)
Conclusion
Equation of the circle: ((x + 1)^2 + (y + 1)^2 = 25)
Center: ((-1, -1))
Radius: 5
📄
Full transcript