Memorizing the Unit Circle
Introduction
- Focus on memorizing the unit circle.
- Understand angles in radians.
Angles in Radians
- Full circle: 2Ï€
- Half circle: π
- Quarter circle: π/2
- Break the unit circle into eight equal parts:
- 1Ï€/4, 2Ï€/4 (Ï€/2), 3Ï€/4, 4Ï€/4 (Ï€)
- 5Ï€/4, 6Ï€/4 (3Ï€/2), 7Ï€/4, 8Ï€/4 (2Ï€)
Additional Angles
- 1Ï€/6
- 2π/6 reduces to π/3
- 3Ï€/6 (Ï€/2)
- 4Ï€/6 reduces to 2Ï€/3
- 5Ï€/6 (no reduction)
- 6Ï€/6 (Ï€)
- 7Ï€/6 (no reduction)
- 8Ï€/6 reduces to 4Ï€/3
- 9Ï€/6 (3Ï€/2)
- 10Ï€/6 reduces to 5Ï€/3
- 11Ï€/6 (no reduction)
Values on the Axes
Quadrants
- Quadrant I: Upper right, x and y positive
- Quadrant II: Upper left, x negative, y positive
- Quadrant III: Bottom left, x and y negative
- Quadrant IV: Lower right, x positive, y negative
Values in Quadrants
- Quadrant I: Increase x from 0 to 1, y from 0 to 1 using square roots
- Reflection across the y-axis modifies signs in other quadrants:
- Quadrant II: x negative, y positive
- Quadrant III: x and y negative
- Quadrant IV: x positive, y negative
Angles in Degrees
- Convert radians to degrees: π = 180°
- Examples:
- π/6 = 30°
- π/4 = 45°
- π/3 = 60°
- π/2 = 90°
- Use multiplication for others (e.g., 5Ï€/4)
Evaluating Trigonometric Functions
- Sine Function: Use y-value
- Example: sin(π/3) = √3/2
- Cosine Function: Use x-value
- Example: cos(7π/6) = -√3/2
- Tangent Function: y/x or sin/cos
- Example: tan(π/3) = √3/1 = √3
Conclusion
- The unit circle helps evaluate trigonometric functions.
- Practice using the unit circle for fast calculations.
If you enjoyed this content, consider subscribing and leaving feedback!