🔵

Understanding the Unit Circle and Angles

May 5, 2025

Memorizing the Unit Circle

Introduction

  • Focus on memorizing the unit circle.
  • Understand angles in radians.

Angles in Radians

  • Full circle: 2Ï€
  • Half circle: Ï€
  • Quarter circle: Ï€/2
  • Break the unit circle into eight equal parts:
    • 1Ï€/4, 2Ï€/4 (Ï€/2), 3Ï€/4, 4Ï€/4 (Ï€)
    • 5Ï€/4, 6Ï€/4 (3Ï€/2), 7Ï€/4, 8Ï€/4 (2Ï€)

Additional Angles

  • 1Ï€/6
  • 2Ï€/6 reduces to Ï€/3
  • 3Ï€/6 (Ï€/2)
  • 4Ï€/6 reduces to 2Ï€/3
  • 5Ï€/6 (no reduction)
  • 6Ï€/6 (Ï€)
  • 7Ï€/6 (no reduction)
  • 8Ï€/6 reduces to 4Ï€/3
  • 9Ï€/6 (3Ï€/2)
  • 10Ï€/6 reduces to 5Ï€/3
  • 11Ï€/6 (no reduction)

Values on the Axes

  • X-axis:
    • Right: x=1
    • Left: x=-1
  • Y-axis:
    • Top: y=1
    • Bottom: y=-1

Quadrants

  • Quadrant I: Upper right, x and y positive
  • Quadrant II: Upper left, x negative, y positive
  • Quadrant III: Bottom left, x and y negative
  • Quadrant IV: Lower right, x positive, y negative

Values in Quadrants

  • Quadrant I: Increase x from 0 to 1, y from 0 to 1 using square roots
  • Reflection across the y-axis modifies signs in other quadrants:
    • Quadrant II: x negative, y positive
    • Quadrant III: x and y negative
    • Quadrant IV: x positive, y negative

Angles in Degrees

  • Convert radians to degrees: Ï€ = 180°
  • Examples:
    • Ï€/6 = 30°
    • Ï€/4 = 45°
    • Ï€/3 = 60°
    • Ï€/2 = 90°
    • Use multiplication for others (e.g., 5Ï€/4)

Evaluating Trigonometric Functions

  • Sine Function: Use y-value
    • Example: sin(Ï€/3) = √3/2
  • Cosine Function: Use x-value
    • Example: cos(7Ï€/6) = -√3/2
  • Tangent Function: y/x or sin/cos
    • Example: tan(Ï€/3) = √3/1 = √3

Conclusion

  • The unit circle helps evaluate trigonometric functions.
  • Practice using the unit circle for fast calculations.

If you enjoyed this content, consider subscribing and leaving feedback!