Apr 22, 2025
f(x) is f'(x), then the antiderivative (integral) of f'(x) is f(x).F(x) is the antiderivative of f(x).f(x) is the antiderivative of f'(x).∫f(x)dx = F(x) + C, where C is the constant of integration.x^n: nx^(n-1).x^n: x^(n+1)/(n+1) + C.3x²:
∫3x² dx = 3x³/3 + C = x³ + C.f(x) = x³ - 4x² + 8x∫(x³ - 4x² + 8x)dx = x⁴/4 - (4x³/3) + 4x² + C∫5 dx = 5x + C∫1/x dx = ln|x| + C.∫8 dr = 8r + C.∫1/x³ dx = -1/(2x²) + C.∫(5x⁷ - 9/x² + 4x - 8) dx= (5x⁸/8) + (9/x) + 2x² - 8x + C∫1/(ax + b) dx = (1/a)ln|ax + b| + C∫1/(3x + 4) dx = (1/3)ln|3x + 4| + Cd/dx [ln(u)] = u'/u∫π dθ = πθ + C∫e ds = es + Cu substitution.