馃攳

Understanding Vector Multiplication and Dot Product

Apr 19, 2025

Lecture Notes on Vector Multiplication and Dot Product

Introduction

  • Can vectors be multiplied?
  • Yes, with two methods: Dot product and another method (not covered in this lecture)
  • Focus on the Dot product today

Dot Product Explanation

  • Definition: Dot product adds the products of corresponding vector components.
  • Example with vectors ( \textbf{a} ) and ( \textbf{b} ):
    • ( \textbf{a} \cdot \textbf{b} = a_1 \times b_1 + a_2 \times b_2 + a_3 \times b_3 )
  • Result: A scalar, not a vector.
  • Properties:
    • Commutative: ( \textbf{a} \cdot \textbf{b} = \textbf{b} \cdot \textbf{a} )
    • Distributive over vector addition
    • Associative with scalar multiplication

Practice Example

  • Find the dot product of given vectors ( \textbf{v} ) and ( \textbf{w} ).
  • Calculate manually to understand the process.

Vector Magnitude and Dot Product

  • If ( \textbf{v} \cdot \textbf{v} = |\textbf{v}|^2 )
  • Magnitude can be expressed using dot product.

Law of Cosines and Dot Product

  • Use Law of Cosines to relate angles and vectors.
  • Formula: ( \textbf{v} \cdot \textbf{w} = |\textbf{v}| |\textbf{w}| \cos(\theta) )
    • ( \theta ) is the angle between ( \textbf{v} ) and ( \textbf{w} )
  • Application: Find angle between two vectors using dot product.

Identifying Vector Relationships

  • Parallel Vectors: Scalar multiples of each other
  • Perpendicular Vectors (Orthogonal): Dot product equals zero
  • Unit Vectors: Magnitude of 1, used in defining direction

Vector Projection

  • Concept: Projecting vector ( \textbf{v} ) onto vector ( \textbf{w} ).
  • Vector Projection Formula:
    • ( \text{proj}_\textbf{w} \textbf{v} = \frac{\textbf{v} \cdot \textbf{w}}{|\textbf{w}|^2} \textbf{w} )
  • Scalar Projection: Component of ( \textbf{v} ) along ( \textbf{w} )_

Work and Dot Product

  • Definition of Work: ( W = |\textbf{F}| |\textbf{d}| \cos(\theta) )
    • ( \textbf{F} ) = force vector, ( \textbf{d} ) = displacement vector
  • Relation to Dot Product: ( W = \textbf{F} \cdot \textbf{d} )

Direction Cosines

  • Define angles that a vector makes with each axis
  • Formulas:
    • ( \cos(\alpha) = \frac{v_1}{|\textbf{v}|} )
    • ( \cos(\beta) = \frac{v_2}{|\textbf{v}|} )
    • ( \cos(\gamma) = \frac{v_3}{|\textbf{v}|} )
  • Verify: ( \cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) = 1 )

Conclusion

  • Review and practice dot product, vector projection, work, and direction cosines.
  • Understand relationships and calculations for application in physics and mathematics.