Coconote
AI notes
AI voice & video notes
Try for free
📐
Understanding Fraction Operations
Feb 7, 2025
Lecture Notes: Multiplying and Dividing Fractions
Multiplying Fractions
Basic Rule
: Multiply the numerators together and the denominators together.
Example: (\frac{7}{15} \times \frac{3}{4})
Multiply numerators: (7 \times 3 = 21)
Multiply denominators: (15 \times 4 = 60)
Result: (\frac{21}{60})
Simplification: Divide both top and bottom by common factor (e.g., 3)
Simplified Result: (\frac{7}{20})
Example 2
(\frac{4}{7} \times \frac{9}{5})
Result: (\frac{36}{35})
Cannot be simplified further.
Multiplying Mixed Numbers
Convert mixed numbers to improper fractions first.
Example: Multiply (\frac{4}{5}) by (2\frac{3}{4})
Convert: (2\frac{3}{4} = \frac{11}{4})
Multiply: (\frac{4}{5} \times \frac{11}{4} = \frac{44}{20})
Simplify: (\frac{11}{5})
Multiplying Fractions < 1
Result is smaller than both fractions.
Example: (\frac{1}{2} \times \frac{1}{3} = \frac{1}{6})
Dividing Fractions
Use the reciprocal of the second fraction and multiply.
Example: (\frac{3}{4} \div \frac{5}{9})
Reciprocal: (\frac{9}{5})
Multiply: (\frac{3}{4} \times \frac{9}{5} = \frac{27}{20})
Example 2
(\frac{2}{3} \div \frac{4}{5})
Reciprocal: (\frac{5}{4})
Multiply: (\frac{2}{3} \times \frac{5}{4} = \frac{10}{12})
Simplify: (\frac{5}{6})
Dividing with Mixed Numbers
Convert mixed numbers to improper fractions first.
Example: (3\frac{1}{2} \div \frac{2}{5})
Convert: (3\frac{1}{2} = \frac{7}{2})
Reciprocal: (\frac{5}{2})
Multiply: (\frac{7}{2} \times \frac{5}{2} = \frac{35}{4})
Convert to Mixed Number: (8\frac{3}{4})
Summary
: This lecture covered the fundamental procedures for multiplying and dividing fractions, including dealing with mixed numbers and simplification steps. Understanding these techniques is crucial for effectively working with fractional values.
📄
Full transcript