📐

Understanding Fraction Operations

Feb 7, 2025

Lecture Notes: Multiplying and Dividing Fractions

Multiplying Fractions

  • Basic Rule: Multiply the numerators together and the denominators together.
    • Example: (\frac{7}{15} \times \frac{3}{4})
      • Multiply numerators: (7 \times 3 = 21)
      • Multiply denominators: (15 \times 4 = 60)
      • Result: (\frac{21}{60})
    • Simplification: Divide both top and bottom by common factor (e.g., 3)
      • Simplified Result: (\frac{7}{20})

Example 2

  • (\frac{4}{7} \times \frac{9}{5})
    • Result: (\frac{36}{35})
    • Cannot be simplified further.

Multiplying Mixed Numbers

  • Convert mixed numbers to improper fractions first.
    • Example: Multiply (\frac{4}{5}) by (2\frac{3}{4})
      • Convert: (2\frac{3}{4} = \frac{11}{4})
      • Multiply: (\frac{4}{5} \times \frac{11}{4} = \frac{44}{20})
      • Simplify: (\frac{11}{5})

Multiplying Fractions < 1

  • Result is smaller than both fractions.
    • Example: (\frac{1}{2} \times \frac{1}{3} = \frac{1}{6})

Dividing Fractions

  • Use the reciprocal of the second fraction and multiply.
    • Example: (\frac{3}{4} \div \frac{5}{9})
      • Reciprocal: (\frac{9}{5})
      • Multiply: (\frac{3}{4} \times \frac{9}{5} = \frac{27}{20})

Example 2

  • (\frac{2}{3} \div \frac{4}{5})
    • Reciprocal: (\frac{5}{4})
    • Multiply: (\frac{2}{3} \times \frac{5}{4} = \frac{10}{12})
    • Simplify: (\frac{5}{6})

Dividing with Mixed Numbers

  • Convert mixed numbers to improper fractions first.
    • Example: (3\frac{1}{2} \div \frac{2}{5})
      • Convert: (3\frac{1}{2} = \frac{7}{2})
      • Reciprocal: (\frac{5}{2})
      • Multiply: (\frac{7}{2} \times \frac{5}{2} = \frac{35}{4})
      • Convert to Mixed Number: (8\frac{3}{4})

  • Summary: This lecture covered the fundamental procedures for multiplying and dividing fractions, including dealing with mixed numbers and simplification steps. Understanding these techniques is crucial for effectively working with fractional values.