📊

Essential Data Science with Python Guide

Jun 2, 2025

Learn Data Science Tutorial With Python

Overview

  • Data Science is rapidly growing, aiding organizations in decision-making, problem-solving, and understanding behavior.
  • Python and R are common languages used in Data Science.
  • This tutorial covers fundamentals of Data Science and Python programming.

Python Libraries for Data Science

  • Pandas: For data manipulation.
  • NumPy: For numerical computing.
  • Matplotlib: For data visualization.
  • Seaborn: For advanced data visualization.
  • Scikit-learn: For machine learning models.

Data Loading Techniques

  • Importing data for analysis:
    • CSV files using Pandas.
    • Excel files.
    • JSON files.
    • SQL databases.
    • Web scraping using BeautifulSoup.
    • MongoDB.

Data Preprocessing

  • Steps to clean and prepare data:
    • Handling missing data with Pandas.
    • Removing duplicates.
    • Scaling and normalizing data.
    • Data aggregation and grouping.
    • Feature selection using Sklearn.
    • Encoding categorical data.
    • Outlier detection using Z-score and Interquartile Range.
    • Managing imbalanced datasets.

Data Analysis

  • Techniques to derive insights:
    • Exploratory Data Analysis (EDA).
    • Univariate and multivariate analysis.
    • Correlation calculations.
    • Various statistical tests: T-tests, ANOVA, Mann-Whitney, Chi-Square, PCA.

Data Visualization

  • Enhancing data understanding via visuals:
    • Using Matplotlib:
      • Line charts, bar plots, histograms, heatmaps, box plots, scatter plots, pie charts, 3D plots.
    • Using Seaborn:
      • Pair plots, count plots, violin plots, strip plots, KDE plots, joint plots, reg plots.
    • Interactive Visualization:
      • Using Plotly and Bokeh for dynamic visuals.

Machine Learning

  • Developing data-driven models:
    • Understanding algorithms like Linear Regression, Naive Bayes, KNN, etc.
    • Importance of Machine Learning in transforming raw data into insights and predictions.

Additional Resources

  • Reference articles and courses related to Data Science and Python.
  • Courses on platforms like GeeksforGeeks for further learning.