Understanding Function Transformations in Algebra

Feb 18, 2025

Lecture on Transformation of Functions

Introduction

  • Welcome to mathcodeserved.com
  • Topic: Transformation of functions
  • Focus: Vertical and horizontal shifts
  • Use: Algebra 2 formulas from mathcodeserved.com

Steps for Transformation

  1. Identify the family of the function
  2. Determine the shifts or transformations
  3. Sketch the graph of the function

Example 1: Absolute Value Function

  • Function: y = |x + 2|
  • Family: Absolute value (V-shaped graph)
  • Transformation Formula: y = a|x - h| + k
  • Transformation:
    • Write function in transformational form: y = 1|x + 2| + 0
    • Shift: 2 units left (x + 2 indicates left shift)
  • Graphing: Sketch parent function with guiding points (-1, 1), (0, 0), (1, 1) and shift 2 units left

Example 2: Quadratic Function

  • Function: y = x² - 4
  • Family: Quadratic (U-shaped graph)
  • Transformation Formula: y = a(x - h)² + k
  • Transformation:
    • Write function in transformational form: y = 1(x - 0)² - 4
    • Shift: 4 units down
  • Graphing: Use guiding points (-1, 1), (0, 0), (1, 1) and shift 4 units down

Example 3: Radical Function

  • Function: y = √(x - 4)
  • Family: Radical
  • Transformation Formula: y = a√(x - h) + k
  • Transformation:
    • Write function in transformational form: y = 1√(x - 4) + 0
    • Shift: 4 units to the right
  • Graphing: Use guiding points (0, 0), (1, 1), (4, 2) and shift 4 units to the right

Example 4: Cubic Function

  • Function: y = (x - 3)³ + 2
  • Family: Cubic
  • Transformation Formula: y = a(x - h)³ + k
  • Transformation:
    • Write function in transformational form: y = 1(x - 3)³ + 2
    • Shifts: 3 units to the right and 2 units up
  • Graphing: Use guiding points (-1, -1), (0, 0), (1, 1) and apply shifts

Conclusion

  • Thanks for watching
  • Encourage feedback and questions
  • Additional resources available on mathcodeserved.com