📈

Horizontal and Vertical Asymptotes - Slant / Oblique (1.5)

Sep 17, 2025

Overview

This lecture covers how to find horizontal, vertical, and slant (oblique) asymptotes for rational functions, with step-by-step examples including analysis of graph behavior, domain, and range.

Vertical Asymptotes

  • Set the denominator equal to zero and solve for ( x ) to find vertical asymptotes.
  • The value(s) where the denominator is zero (and not canceled by the numerator) is the vertical asymptote.

Horizontal Asymptotes

  • Compare degrees of numerator and denominator:
    • If denominator degree > numerator (bottom heavy), horizontal asymptote is ( y = 0 ).
    • If degrees are equal, horizontal asymptote is ratio of leading coefficients.
    • If numerator degree > denominator (top heavy), there is no horizontal asymptote.

Slant (Oblique) Asymptotes

  • Occur when numerator degree is exactly one more than denominator.
  • Use long division; slant asymptote is the linear quotient (ignore remainder).

Holes (Point Discontinuities)

  • If a factor cancels in numerator and denominator, the corresponding ( x )-value is a hole.
  • To find hole’s ( y )-coordinate, substitute ( x ) into the simplified function.

Domain and Range

  • Domain excludes vertical asymptote(s) and ( x )-values of holes.
  • Range excludes horizontal asymptote(s) and hole’s ( y )-value(s).

Example Summaries

Example 1: ( y = \frac{1}{x-3} )

  • Vertical asymptote: ( x = 3 ).
  • Horizontal asymptote: ( y = 0 ).
  • Domain: ( (-\infty, 3) \cup (3, \infty) ).
  • Range: ( (-\infty, 0) \cup (0, \infty) ).

Example 2: ( y = \frac{1}{x+2} + 7 )

  • Vertical asymptote: ( x = -2 ).
  • Horizontal asymptote: ( y = 7 ).
  • Domain: ( (-\infty, -2) \cup (-2, \infty) ).
  • Range: ( (-\infty, 7) \cup (7, \infty) ).

Example 3: ( y = \frac{6x-18}{2x+4} )

  • Vertical asymptote: ( x = -2 ).
  • Horizontal asymptote: ( y = 3 ).
  • X-intercept: ( x = 3 ).
  • Y-intercept: ( y = -4.5 ).
  • Domain: ( (-\infty, -2) \cup (-2, \infty) ).
  • Range: ( (-\infty, 3) \cup (3, \infty) ).

Example 4: ( y = \frac{2x^2 - 3x - 2}{x^2 + x - 6} )

  • Factor to find vertical asymptote(s) and hole(s).
  • Vertical asymptote: ( x = -3 ).
  • Hole at ( x = 2 ), ( y = 1 ).
  • Horizontal asymptote: ( y = 2 ).
  • Domain: ( (-\infty, -3) \cup (-3, 2) \cup (2, \infty) ).
  • Range: ( (-\infty, 1) \cup (1, 2) \cup (2, \infty) ).

Example 5: ( y = \frac{2x^2-x+1}{x-2} )

  • Vertical asymptote: ( x = 2 ).
  • No horizontal asymptote (numerator degree > denominator).
  • Slant asymptote: ( y = 2x + 3 ).

Key Terms & Definitions

  • Rational Function — A function of the form ( \frac{P(x)}{Q(x)} ) where ( P ) and ( Q ) are polynomials.
  • Vertical Asymptote — Vertical line ( x = a ) where function approaches infinity.
  • Horizontal Asymptote — Horizontal line ( y = b ) showing end behavior as ( x \to \pm\infty ).
  • Slant/Oblique Asymptote — A non-horizontal asymptote occurring when the numerator's degree is one higher than the denominator’s.
  • Hole (Point Discontinuity) — A point where both numerator and denominator are zero at the same ( x )-value after factoring.

Action Items / Next Steps

  • Practice factoring rational functions and identifying all asymptotes and holes.
  • Graph several rational functions, marking asymptotes, holes, and intercepts.
  • Review polynomial long division for finding slant asymptotes.