🧮

Essential Techniques for Factoring Polynomials

May 16, 2025

Factoring Polynomials

Simple Examples

  • Example 1:

    • Expression: 6x - 12
    • Factor: Take out the greatest common factor (GCF) which is 6
    • Result: 6(x - 2)
  • Example 2:

    • Expression: 3x³ - 9x²
    • GCF: 3x²
    • Result: 3x²(x - 3)
  • Example 3:

    • Expression: 4x² - 12x
    • GCF: 4x
    • Result: 4x(x - 3)

Factoring Trinomials

  • Trinomial with leading coefficient 1:

    • Example: x² + 2x - 15
    • Find two numbers that multiply to -15 and add to 2: 5 and -3
    • Result: (x + 5)(x - 3)
  • Trinomial with non-1 leading coefficient:

    • Example: 2x² - 6x - 56
    • GCF: 2
    • New trinomial: x² - 3x - 28
    • Find two numbers that multiply to -28 and add to -3: -7 and 4
    • Result: 2(x - 7)(x + 4)

Difference of Perfect Squares

  • Example 1: x² - 16

    • Factor: (x + 4)(x - 4)
  • Example 2: x² - 64

    • Factor: (x + 8)(x - 8)
  • Example 3: 4x² - 25

    • Factor: (2x + 5)(2x - 5)
  • Example 4: 9x² - 49

    • Factor: (3x + 7)(3x - 7)

Advanced Factoring Techniques

  • No GCF Available Example:

    • Expression: 2x² - 5x - 3
    • Multiply leading coefficient by constant: 2 * -3 = -6
    • Find numbers that multiply to -6 and add to -5: -6 and 1
    • Factor by grouping: 2x² + 1x - 6x - 3
    • Result: (2x + 1)(x - 3)
  • Complex Example:

    • Expression: 6x² + x - 15
    • Multiply leading coefficient by constant: 6 * -15 = -90
    • Find numbers that multiply to -90 and add to 1: -9 and 10
    • Factor by grouping: 3x(2x - 3) + 5(2x - 3)
    • Result: (2x - 3)(3x + 5)

Factoring with Four Terms

  • Example:
    • Expression: 3x³ - 2x² - 12x + 8
    • Ratio: First two and last two coefficients have the same ratio (3/-2 = -12/8)
    • Factor by grouping: x²(3x - 2) - 4(3x - 2)
    • Rewrite: (3x - 2)(x² - 4)
    • Factor x² - 4: (x + 2)(x - 2)
    • Final Result: (3x - 2)(x + 2)(x - 2)

Conclusion

  • For more examples, check the links in the video description.