Jul 17, 2024
a = 2i + 2j + 2k (or generally 2i + 3j + 4k)2, 3, 4cos(α), cos(β), cos(γ)L, M, NL = x/sqrt(x^2 + y^2 + z^2)M = y/sqrt(x^2 + y^2 + z^2)N = z/sqrt(x^2 + y^2 + z^2)(x1, y1, z1) and parallel to a given vector (a, b, c) has the form:
r = a + λd(x - x1)/a = (y - y1)/b = (z - z1)/c = λ(5, 2, -4) and parallel to (3, 2, -8):x = 5 + 3λ
y = 2 + 2λz = -4 - 8λx - 5/3 = y - 2/2 = z + 4/8cos(θ) = (B1 · B2) / (|B1| * |B2|)*(1, 2, 2) and (3, 2, 6):
1*3 + 2*2 + 2*6 = 3 + 4 + 12 = 19|B1| = √(1^2 + 2^2 + 2^2) = √9 = 3, |B2| = √(3^2 + 2^2 + 6^2) = √49 = 7cos(θ) = 19/21θ = cos^(-1)(19/21)*(7, -5, 1) and (1, 2, 3) are perpendicular.D = |(A2 - A1) · (B1 x B2)| / |B1 x B2|A1 = (1, -1, 1), A2 = (2, 1, -1)B1 = (2, -1, 1), B2 = (3, -5, 2)B1 x B2 = (3, -1, -7)(A2 - A1) · (B1 x B2) = (1, 2, -2) · (3, -1, -7)10/√59