🧮

Understanding Addition and Subtraction in Scientific Notation

May 7, 2025

Lecture Notes: Adding and Subtracting Numbers in Scientific Notation

Key Concepts

  • Scientific Notation: A way to express very large or very small numbers, typically in the form of ( a \times 10^n ), where ( a ) is a coefficient and ( 10^n ) is a power of ten.
  • Adding/Subtracting with Same Exponents: When two numbers have the same power of ten, you can directly add or subtract their coefficients.
  • Adjusting Exponents: If the exponents differ, convert one number so both exponents match before performing addition or subtraction.

Examples and Solutions

Example 1: Same Exponent

  • Problem: ( 9 \times 10^3 - 5 \times 10^3 )
  • Solution:
    • Subtract coefficients: ( 9 - 5 = 4 )
    • Final Answer: ( 4 \times 10^3 )

Example 2: Same Exponent

  • Problems:
    • ( 7 \times 10^4 + 2 \times 10^4 )
    • ( 5 \times 10^6 - 3 \times 10^6 )
  • Solutions:
    • ( 7 + 2 = 9 ); Answer: ( 9 \times 10^4 )
    • ( 5 - 3 = 2 ); Answer: ( 2 \times 10^6 )

Example 3: Different Exponents

  • Problem: ( 12 \times 10^4 - 4 \times 10^5 )
  • Solution:
    • Convert ( 12 \times 10^4 ) to ( 1.2 \times 10^5 ) by moving the decimal left.
    • Subtract: ( 1.2 - 4 = -2.8 )
    • Final Answer: ( -2.8 \times 10^5 )

Example 4: Different Exponents

  • Problem: ( 3.6 \times 10^5 + 2.7 \times 10^4 )
  • Solution:
    • Convert ( 2.7 \times 10^4 ) to ( 0.27 \times 10^5 ) by moving the decimal left.
    • Add: ( 3.6 + 0.27 = 3.87 )
    • Final Answer: ( 3.87 \times 10^5 )

Example 5: Different Exponents

  • Problem: ( 4.2 \times 10^7 + 8 \times 10^5 )
  • Solution:
    • Convert ( 8 \times 10^5 ) to ( 0.08 \times 10^7 ) by moving the decimal right.
    • Add: ( 4.2 + 0.08 = 4.28 )
    • Final Answer: ( 4.28 \times 10^7 )

Example 6: Different Exponents

  • Problem: ( 0.5 \times 10^7 - 9.3 \times 10^5 )
  • Solution:
    • Convert ( 9.3 \times 10^5 ) to ( 0.093 \times 10^7 ) by moving the decimal left.
    • Subtract: ( 0.5 - 0.093 = 0.407 )
    • Final Answer: ( 0.407 \times 10^7 )

General Strategy

  1. Check Exponents: If they are the same, directly add or subtract coefficients.
  2. Adjust Exponents: If different, convert one number so exponents match by moving the decimal point.
  3. Perform Operation: Add or subtract the coefficients.
  4. Re-combine: Attach the common power of ten to the resulting coefficient.