Coconote
AI notes
AI voice & video notes
Try for free
Geometry Formulas for SAT/ACT Preparation
Aug 6, 2024
π
Review flashcards
πΊοΈ
Mindmap
Geometry Review for SAT/ACT and Final Exams
Common Shapes and Formulas
Circle
Circumference
:
Formula: ( C = 2\pi r )
Example: Radius = 5 ( \Rightarrow C = 2\pi \times 5 = 10\pi )
Decimal Approximation: ( 10\pi \approx 31.416 )
Area
:
Formula: ( A = \pi r^2 )
Example: Radius = 5 ( \Rightarrow A = \pi \times 5^2 = 25\pi )
Decimal Approximation: ( 25\pi \approx 78.54 )
Diameter
:
Formula: ( d = 2r )
Example: Radius = 5 ( \Rightarrow d = 2 \times 5 = 10 )
Chord vs Diameter
: Diameter passes through the center; chord does not.
Square
Area
:
Formula: ( A = s^2 )
Example: Side length = 8 ( \Rightarrow A = 8^2 = 64 ) square units
Perimeter
:
Formula: ( P = 4s )
Example: Side length = 8 ( \Rightarrow P = 4 \times 8 = 32 ) units
Problem Example
:
Given: Area = 36 square feet
Find: Perimeter
Solution: ( s = \sqrt{36} = 6 \Rightarrow P = 4 \times 6 = 24 ) feet
Rectangle
Area
:
Formula: ( A = l \times w )
Example: Length = 10, Width = 5 ( \Rightarrow A = 10 \times 5 = 50 ) square units
Perimeter
:
Formula: ( P = 2l + 2w )
Example: Length = 10, Width = 5 ( \Rightarrow P = 2 \times 10 + 2 \times 5 = 30 ) units
Problem Example
:
Given: Area = 40, Length = 8
Find: Perimeter
Solution: ( w = \frac{40}{8} = 5 \Rightarrow P = 2 \times 8 + 2 \times 5 = 26 ) units
Complex Problem Example
:
Given: Length is 3 more than twice the width, Area = 44
Solution Steps:
Length = 3 + 2w
Equation: ( (3+2w)w = 44 )
Solve for ( w: 2w^2 + 3w - 44 = 0 )
Factor the quadratic: ( w = 4, l = 11 )
Perimeter: ( P = 2l + 2w = 2 \times 11 + 2 \times 4 = 30 ) units
Triangles
Right Triangle and Pythagorean Theorem
:
Formula: ( a^2 + b^2 = c^2 )
Example: Legs = 3, 4; Hypotenuse = 5
Calculations:
( 3^2 + 4^2 = 5^2 \Rightarrow 9 + 16 = 25 \Rightarrow \sqrt{25} = 5 )
Special Right Triangles
:
3-4-5 Triangle
5-12-13 Triangle
7-24-25 Triangle
8-15-17 Triangle
9-40-41 Triangle
11-60-61 Triangle
Problem Example
:
Given: Hypotenuse = 10, One leg = 6
Find: Other leg
Solution: ( a^2 + 6^2 = 10^2 \Rightarrow a^2 + 36 = 100 \Rightarrow a^2 = 64 \Rightarrow a = 8 )
Additional Examples
Using Special Triangles for Quick Solutions
:
Multiples of known special triangles (e.g., 6-8-10 from 3-4-5)
Rectangle Problem
:
Given: AB = 12, AC = 13
Find: Area of rectangle
Use Pythagorean theorem or special triangles to find missing side.
Solution: Width = 5 ( \Rightarrow A = 12 \times 5 = 60 )
Additional Resources
YouTube Channel
:
ACT and SAT Math Videos for additional practice and examples.
Links provided in the video or search on YouTube.
π
Full transcript