Geometry Formulas for SAT/ACT Preparation

Aug 6, 2024

Geometry Review for SAT/ACT and Final Exams

Common Shapes and Formulas

Circle

  • Circumference:
    • Formula: ( C = 2\pi r )
    • Example: Radius = 5 ( \Rightarrow C = 2\pi \times 5 = 10\pi )
    • Decimal Approximation: ( 10\pi \approx 31.416 )
  • Area:
    • Formula: ( A = \pi r^2 )
    • Example: Radius = 5 ( \Rightarrow A = \pi \times 5^2 = 25\pi )
    • Decimal Approximation: ( 25\pi \approx 78.54 )
  • Diameter:
    • Formula: ( d = 2r )
    • Example: Radius = 5 ( \Rightarrow d = 2 \times 5 = 10 )
  • Chord vs Diameter: Diameter passes through the center; chord does not.

Square

  • Area:
    • Formula: ( A = s^2 )
    • Example: Side length = 8 ( \Rightarrow A = 8^2 = 64 ) square units
  • Perimeter:
    • Formula: ( P = 4s )
    • Example: Side length = 8 ( \Rightarrow P = 4 \times 8 = 32 ) units
  • Problem Example:
    • Given: Area = 36 square feet
    • Find: Perimeter
    • Solution: ( s = \sqrt{36} = 6 \Rightarrow P = 4 \times 6 = 24 ) feet

Rectangle

  • Area:
    • Formula: ( A = l \times w )
    • Example: Length = 10, Width = 5 ( \Rightarrow A = 10 \times 5 = 50 ) square units
  • Perimeter:
    • Formula: ( P = 2l + 2w )
    • Example: Length = 10, Width = 5 ( \Rightarrow P = 2 \times 10 + 2 \times 5 = 30 ) units
  • Problem Example:
    • Given: Area = 40, Length = 8
    • Find: Perimeter
    • Solution: ( w = \frac{40}{8} = 5 \Rightarrow P = 2 \times 8 + 2 \times 5 = 26 ) units
  • Complex Problem Example:
    • Given: Length is 3 more than twice the width, Area = 44
    • Solution Steps:
      • Length = 3 + 2w
      • Equation: ( (3+2w)w = 44 )
      • Solve for ( w: 2w^2 + 3w - 44 = 0 )
      • Factor the quadratic: ( w = 4, l = 11 )
      • Perimeter: ( P = 2l + 2w = 2 \times 11 + 2 \times 4 = 30 ) units

Triangles

  • Right Triangle and Pythagorean Theorem:
    • Formula: ( a^2 + b^2 = c^2 )
    • Example: Legs = 3, 4; Hypotenuse = 5
    • Calculations:
      • ( 3^2 + 4^2 = 5^2 \Rightarrow 9 + 16 = 25 \Rightarrow \sqrt{25} = 5 )
  • Special Right Triangles:
    • 3-4-5 Triangle
    • 5-12-13 Triangle
    • 7-24-25 Triangle
    • 8-15-17 Triangle
    • 9-40-41 Triangle
    • 11-60-61 Triangle
  • Problem Example:
    • Given: Hypotenuse = 10, One leg = 6
    • Find: Other leg
    • Solution: ( a^2 + 6^2 = 10^2 \Rightarrow a^2 + 36 = 100 \Rightarrow a^2 = 64 \Rightarrow a = 8 )

Additional Examples

  • Using Special Triangles for Quick Solutions:
    • Multiples of known special triangles (e.g., 6-8-10 from 3-4-5)
  • Rectangle Problem:
    • Given: AB = 12, AC = 13
    • Find: Area of rectangle
    • Use Pythagorean theorem or special triangles to find missing side.
    • Solution: Width = 5 ( \Rightarrow A = 12 \times 5 = 60 )

Additional Resources

  • YouTube Channel:
    • ACT and SAT Math Videos for additional practice and examples.
    • Links provided in the video or search on YouTube.