⚛️

Understanding Cubic Unit Cells and Structures

Apr 29, 2025

Introduction to Unit Cells

Cubic Structures

  • Simple Cubic Structure

    • 1 atom per unit cell
    • Coordination number: 6
    • Volume efficiency: 52% (48% empty)
    • Edge length (x) = 2r
  • Body-Centered Cubic (BCC) Structure

    • 2 atoms per unit cell
    • Coordination number: 8
    • Volume efficiency: 68% (32% empty)
    • Edge length (x) = ( \frac{4}{\sqrt{3}} \times r )
  • Face-Centered Cubic (FCC) Structure

    • 4 atoms per unit cell
    • Coordination number: 12
    • Volume efficiency: 74% (26% empty)
    • Edge length (x) = ( \sqrt{8} \times r )

Key Concepts

  • Coordination Number: Number of atoms adjacent to a single atom.
  • Edge Length (x): Side length of a cube.
  • Atomic Radius (r): Half of the diameter of an atom.

Calculations

Simple Cubic Structure

  • Atoms per Unit Cell: 8 corners with 1/8 of an atom each, totaling 1 atom.
  • Coordination: Each atom is attached to 6 others (up, down, left, right, front, back).
  • Volume Utilization: Derive 52% by comparing the atom's volume to the cube's volume.
    • ( \frac{\frac{4}{3} \pi r^3}{(2r)^3} = 0.5236 )

Body-Centered Cubic Structure

  • Atoms per Unit Cell: 8 corners with 1/8 of an atom each plus 1 in the center, totaling 2 atoms.
  • Coordination: Central atom connected to 8 corners.
  • Volume Utilization: Calculate 68% efficiency.
    • ( \frac{2 \times \frac{4}{3} \pi r^3}{(\frac{4}{\sqrt{3}} r)^3} = 0.68 )
    • Steps: Simplify to ( \frac{2 \pi \sqrt{3}}{16} ) leading to ( 0.68 )

Additional Notes

  • These calculations and concepts are crucial for understanding material properties and can be applied to calculate densities or atomic radii in specific structures.