📓

Differentiation Formulas in Calculus

Jul 29, 2024

Differentiation Formulas in Calculus Lecture Notes

Derivative of a Constant

  • The derivative of a constant is always zero.

Power Rule

  • Formula:
    • For a variable x raised to a constant n:
      • d/dx(x^n) = n * x^(n-1)
    • Examples:
      • d/dx(x^3) = 3x^2
      • d/dx(x^4) = 4x^3
      • d/dx(x^5) = 5x^4

Derivative of a Constant Raised to a Variable

  • Formula:
    • For a constant a raised to a variable x:
      • d/dx(a^x) = a^x * ln(a)
    • For a constant a raised to a function U(x):
      • d/dx(a^U) = a^U * U' * ln(a)

Logarithmic Differentiation

  • Used for finding the derivative of a variable raised to a variable.
  • Further resources available on YouTube (Organic Chemistry Tutor).

Constant Multiple Rule

  • Formula:
    • For a function f(x) multiplied by a constant C:
      • d/dx(C * f(x)) = C * d/dx(f(x))
    • Example:
      • d/dx(5x^4) = 5 * d/dx(x^4) = 5 * 4x^3 = 20x^3

Product Rule

  • Formula:
    • For two functions u and v:
      • d/dx(u * v) = u' * v + u * v'

Quotient Rule

  • Formula:
    • For a fraction of two functions u and v:
      • d/dx(u/v) = (v * u' - u * v') / v^2

Chain Rule

  • Formula:
    • For a composite function f(g(x)):
      • d/dx(f(g(x))) = f'(g(x)) * g'(x)
    • For a composite function f(g(U(x))):
      • d/dx(f(g(U(x)))) = f'(g(U(x))) * g'(U(x)) * U'

Chain Rule with Power Rule

  • Formula:
    • For a function f(x) raised to a constant n:
      • d/dx(f(x)^n) = n * f(x)^(n-1) * f'(x)
    • Example:
      • For any function of x: d/dx(n * f(x)^(n-1)) * f'(x)

Logarithmic Functions

  • Formula:
    • For log base a of U(x):
      • d/dx(log_a(U)) = U' / (U * ln(a))
    • For natural log of U(x):
      • d/dx(ln(U)) = U' / U

Trigonometric Functions

  • Formulas:
    • d/dx(sin(U)) = cos(U) * U'
    • d/dx(cos(U)) = -sin(U) * U'
    • d/dx(tan(U)) = sec^2(U) * U'
    • d/dx(cot(U)) = -csc^2(U) * U'
    • d/dx(sec(U)) = sec(U) * tan(U) * U'
    • d/dx(csc(U)) = -csc(U) * cot(U) * U'

Inverse Trigonometric Functions

  • Formulas:
    • d/dx(arcsin(U)) = U' / sqrt(1 - U^2)
    • d/dx(arccos(U)) = -U' / sqrt(1 - U^2)
    • d/dx(arctan(U)) = U' / (1 + U^2)
    • d/dx(arccot(U)) = -U' / (1 + U^2)
    • d/dx(arcsec(U)) = U' / (|U| * sqrt(U^2 - 1))
    • d/dx(arccsc(U)) = -U' / (|U| * sqrt(U^2 - 1))

Important Notes

  • It is crucial to understand and remember these formulas for studying derivatives in calculus.
  • Additional example problems and explanations available through links (not provided here).