Nov 2, 2024
Welcome to the lecture series on digital image processing. Today's focus is on basic mathematical transformations including translation, rotation, and scaling in both 2D and 3D, alongside their inverse transformations.
Moving a point P(x, y) by a vector results in a new point P'(x', y').
Matrix representation:
[ \begin{bmatrix} x' \ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_0 \ 0 & 1 & y_0 \end{bmatrix} \begin{bmatrix} x \ y \ 1 \end{bmatrix} ]
Unified matrix expression ensures symmetry and simplified computation.
Rotating a point P(x, y) around the origin by angle θ.
Expression:
[ \begin{bmatrix} x' \ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} ]
Scaling factors Sx and Sy in x and y directions.
Matrix representation:
[ \begin{bmatrix} x' \ y' \end{bmatrix} = \begin{bmatrix} S_x & 0 \ 0 & S_y \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} ]
Point P(x, y, z) translated to P'(x', y', z') using vector (x0, y0, z0).
Unified matrix equation:
[ \begin{bmatrix} x' \ y' \ z' \ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & x_0 \ 0 & 1 & 0 & y_0 \ 0 & 0 & 1 & z_0 \ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \ y \ z \ 1 \end{bmatrix} ]
Rotations can occur around x, y, or z axes, with distinct matrices for each.
Z-axis rotation matrix:
[ \begin{bmatrix} \cos \theta & \sin \theta & 0 & 0 \ -\sin \theta & \cos \theta & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} ]
Similar matrices for x and y axis rotations.
These transformations are foundational in image processing, especially when handling geometric corrections and modifications in both 2D and 3D spaces.