📐

Key Trigonometric Identities Overview

Apr 23, 2025

Trigonometry Identities Lecture Notes

Introduction

  • Overview of common trigonometry identities.
  • Useful for beginners or exam preparation.

Right Triangle Basics

  • Triangle components: opposite side, adjacent side, hypotenuse.

Trigonometric Ratios

  • SOHCAHTOA:
    • Sine (sin): Opposite / Hypotenuse
    • Cosine (cos): Adjacent / Hypotenuse
    • Tangent (tan): Opposite / Adjacent

Reciprocal Identities

  • Cosecant (csc): 1 / sin
  • Secant (sec): 1 / cos
  • Cotangent (cot): 1 / tan

Example Problem

  • For a 3-4-5 triangle:
    • sin(θ) = 4/5
    • cos(θ) = 3/5
    • tan(θ) = 4/3
    • Reciprocal Examples:
      • csc(θ) = 5/4
      • sec(θ) = 5/3
      • cot(θ) = 3/4

Quotient Identities

  • tan(θ) = sin(θ) / cos(θ)
  • cot(θ) = cos(θ) / sin(θ)

Pythagorean Identities

  • sin²(θ) + cos²(θ) = 1
  • 1 + cot²(θ) = csc²(θ)
  • 1 + tan²(θ) = sec²(θ)

Even and Odd Functions

  • Even functions: cos(θ), sec(θ)
  • Odd functions: sin(θ), csc(θ), tan(θ), cot(θ)

Cofunction Identities

  • cos(θ) = sin(90° - θ)
  • sec(θ) = csc(90° - θ)
  • tan(θ) = cot(90° - θ)

Angle Sum and Difference

  • Sine: sin(α ± β) = sin(α)cos(β) ± cos(α)sin(β)
  • Cosine: cos(α ± β) = cos(α)cos(β) ∓ sin(α)sin(β)
  • Tangent: (tan(α) ± tan(β)) / (1 ∓ tan(α)tan(β))

Double Angle Identities

  • sin(2θ) = 2sin(θ)cos(θ)
  • cos(2θ) = cos²(θ) - sin²(θ) = 2cos²(θ) - 1 = 1 - 2sin²(θ)
  • tan(2θ) = 2tan(θ) / (1 - tan²(θ))

Half Angle Identities

  • sin(θ/2) = ±√((1 - cos(θ))/2)
  • cos(θ/2) = ±√((1 + cos(θ))/2)
  • tan(θ/2) = ±√((1 - cos(θ)) / (1 + cos(θ)))

Power Reducing Formulas

  • sin²(θ) = (1 - cos(2θ)) / 2
  • cos²(θ) = (1 + cos(2θ)) / 2

Product-to-Sum and Sum-to-Product Formulas

  • Product-to-Sum:
    • sin(α)sin(β) = 1/2[cos(α-β) - cos(α+β)]
    • cos(α)cos(β) = 1/2[cos(α-β) + cos(α+β)]
    • sin(α)cos(β) = 1/2[sin(α+β) + sin(α-β)]
  • Sum-to-Product:
    • sin(α) + sin(β) = 2sin[(α+β)/2]cos[(α-β)/2]
    • cos(α) + cos(β) = 2cos[(α+β)/2]cos[(α-β)/2]

Law of Sines

  • sin(A)/a = sin(B)/b = sin(C)/c

Law of Cosines

  • c² = a² + b² - 2ab cos(C)

Area of a Triangle

  • Area = 1/2 ab sin(C)

Law of Tangents (Less Common)

  • (a-b)/(a+b) = (tan[(A-B)/2]) / (tan[(A+B)/2])

Conclusion

  • Important trigonometric identities for courses and exams.