Coconote
AI notes
AI voice & video notes
Try for free
📐
Key Trigonometric Identities Overview
Apr 23, 2025
Trigonometry Identities Lecture Notes
Introduction
Overview of common trigonometry identities.
Useful for beginners or exam preparation.
Right Triangle Basics
Triangle components: opposite side, adjacent side, hypotenuse.
Trigonometric Ratios
SOHCAHTOA
:
Sine (sin)
: Opposite / Hypotenuse
Cosine (cos)
: Adjacent / Hypotenuse
Tangent (tan)
: Opposite / Adjacent
Reciprocal Identities
Cosecant (csc)
: 1 / sin
Secant (sec)
: 1 / cos
Cotangent (cot)
: 1 / tan
Example Problem
For a 3-4-5 triangle:
sin(θ) = 4/5
cos(θ) = 3/5
tan(θ) = 4/3
Reciprocal Examples
:
csc(θ) = 5/4
sec(θ) = 5/3
cot(θ) = 3/4
Quotient Identities
tan(θ) = sin(θ) / cos(θ)
cot(θ) = cos(θ) / sin(θ)
Pythagorean Identities
sin²(θ) + cos²(θ) = 1
1 + cot²(θ) = csc²(θ)
1 + tan²(θ) = sec²(θ)
Even and Odd Functions
Even functions
: cos(θ), sec(θ)
Odd functions
: sin(θ), csc(θ), tan(θ), cot(θ)
Cofunction Identities
cos(θ) = sin(90° - θ)
sec(θ) = csc(90° - θ)
tan(θ) = cot(90° - θ)
Angle Sum and Difference
Sine
: sin(α ± β) = sin(α)cos(β) ± cos(α)sin(β)
Cosine
: cos(α ± β) = cos(α)cos(β) ∓ sin(α)sin(β)
Tangent
: (tan(α) ± tan(β)) / (1 ∓ tan(α)tan(β))
Double Angle Identities
sin(2θ) = 2sin(θ)cos(θ)
cos(2θ) = cos²(θ) - sin²(θ) = 2cos²(θ) - 1 = 1 - 2sin²(θ)
tan(2θ) = 2tan(θ) / (1 - tan²(θ))
Half Angle Identities
sin(θ/2) = ±√((1 - cos(θ))/2)
cos(θ/2) = ±√((1 + cos(θ))/2)
tan(θ/2) = ±√((1 - cos(θ)) / (1 + cos(θ)))
Power Reducing Formulas
sin²(θ) = (1 - cos(2θ)) / 2
cos²(θ) = (1 + cos(2θ)) / 2
Product-to-Sum and Sum-to-Product Formulas
Product-to-Sum
:
sin(α)sin(β) = 1/2[cos(α-β) - cos(α+β)]
cos(α)cos(β) = 1/2[cos(α-β) + cos(α+β)]
sin(α)cos(β) = 1/2[sin(α+β) + sin(α-β)]
Sum-to-Product
:
sin(α) + sin(β) = 2sin[(α+β)/2]cos[(α-β)/2]
cos(α) + cos(β) = 2cos[(α+β)/2]cos[(α-β)/2]
Law of Sines
sin(A)/a = sin(B)/b = sin(C)/c
Law of Cosines
c² = a² + b² - 2ab cos(C)
Area of a Triangle
Area = 1/2 ab sin(C)
Law of Tangents (Less Common)
(a-b)/(a+b) = (tan[(A-B)/2]) / (tan[(A+B)/2])
Conclusion
Important trigonometric identities for courses and exams.
📄
Full transcript