Sep 24, 2024
Net force (F) = mass (m) * acceleration (a)
Leads to the equation:
$$ mx'' + b x' + kx = 0 $$
Dividing by m gives:
$$ x'' + \frac{b}{m} x' + \frac{k}{m} x = 0 $$
Let:
Equation becomes:
$$ x'' + 2\beta x' + \omega_0^2 x = 0 $$
Solutions of the equation take the form:
$$ x(t) = a_1 e^{\alpha_1 t} + a_2 e^{\alpha_2 t} $$
Where ( \alpha_1 ) and ( \alpha_2 ) are determined from the characteristic equation.
No Damping (ideal setup, β = 0)
$$ x(t) = A \cos(\omega_0 t + \phi) $$
Underdamping (β² < ω₀²)
$$ x(t) = A e^{-\beta t} \cos(\omega_1 t + \phi) $$
Critical Damping (β² = ω₀²)
$$ x(t) = A t e^{-\beta t} $$
Overdamping (β² > ω₀²)
$$ x(t) = A_1 e^{(-\beta + \sqrt{\beta^2 - \omega_0^2})t} + A_2 e^{(-\beta - \sqrt{\beta^2 - \omega_0^2})t} $$