Aug 1, 2024
git clone <repository_link>
python -m venv tutorial_env
source tutorial_env/bin/activate
pip install -r requirements.txt
import pandas as pd
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
df.head()
to view first few rows.df.tail()
to view last rows.df.columns
to see column names.df.index
to see index values.df = pd.read_csv('path/to/file.csv')
pd.read_csv()
pd.read_excel()
pd.read_parquet()
head()
, tail()
, sample()
..loc[]
and .iloc[]
:
.loc[]
uses labels..iloc[]
uses index positions..at[]
and .iat[]
for accessing single values efficiently.df.loc[row_index, 'column_name'] = new_value
df['new_column'] = values
df.drop('column_name', axis=1, inplace=True)
filtered_df = df[df['column_name'] > value]
&
, |
).fillna()
:
df.fillna(value)
dropna()
.isna()
to identify missing values.groupby()
to aggregate data.
grouped = df.groupby('column_name').sum()
pivot_table()
.