📊

Comprehensive Guide to Python Pandas

Aug 1, 2024

Complete Python Pandas Tutorial Notes

Introduction

  • Excited for the updated tutorial on Python Pandas.
  • Grateful for past support; many updates and new tools in the Pandas library.
  • Suitable for beginners and experienced users alike.

Getting Started with Pandas

  • Options to start with Pandas:
    • Use Google Colab to edit and run code in your browser.
    • Alternatively, set up locally with editors like Visual Studio Code, PyCharm, or Jupyter Lab.
  • Clone the repository for the tutorial data files using the command:
    git clone <repository_link>  
    
  • Create and activate a virtual environment:
    python -m venv tutorial_env  
    source tutorial_env/bin/activate  
    
  • Install necessary libraries using:
    pip install -r requirements.txt  
    

DataFrames in Pandas

  • DataFrame: Main data structure in Pandas, resembling a table with enhanced functionality.
  • Example of creating a DataFrame:
    import pandas as pd  
    df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})  
    
  • Methods to explore DataFrames:
    • df.head() to view first few rows.
    • df.tail() to view last rows.
    • df.columns to see column names.
    • df.index to see index values.

Loading Data

  • Load CSV files with:
    df = pd.read_csv('path/to/file.csv')  
    
  • CSV is common, but other formats (like Parquet, Feather) can be more efficient.
  • Load data from different formats:
    • CSV: pd.read_csv()
    • Excel: pd.read_excel()
    • Parquet: pd.read_parquet()

Accessing Data

  • View data using head(), tail(), sample().
  • Access specific rows/columns with .loc[] and .iloc[]:
    • .loc[] uses labels.
    • .iloc[] uses index positions.
  • Use .at[] and .iat[] for accessing single values efficiently.

Modifying Data

  • To modify a value in DataFrame:
    df.loc[row_index, 'column_name'] = new_value  
    
  • Add or drop columns:
    • Add: df['new_column'] = values
    • Drop: df.drop('column_name', axis=1, inplace=True)

Filtering Data

  • Filter rows based on conditions:
    filtered_df = df[df['column_name'] > value]  
    
  • Use logical operators to combine conditions (e.g., &, |).

Handling Missing Values

  • Fill missing values with fillna():
    df.fillna(value)  
    
  • Drop missing values with dropna().
  • Use isna() to identify missing values.

Aggregating Data

  • Use groupby() to aggregate data.
    grouped = df.groupby('column_name').sum()  
    
  • Create pivot tables with pivot_table().

Advanced Functionality

  • Utilize the new Pi Arrow backend for performance improvements.
  • AI tools (like GitHub Copilot) can assist with code generation.

Resources & Recommendations

  • Explore the Olympic dataset further to practice with Pandas.
  • Check out tutorials on cleaning datasets and solving Pandas puzzles for additional practice.