Coconote
AI notes
AI voice & video notes
Try for free
Understanding Rational Functions and Graphing
Feb 12, 2025
π€
Take quiz
πΊοΈ
Mindmap
Algebra 2: Graphing Rational Functions - Section 7-2, Day 1
Introduction to Rational Functions
Definition
: A rational function has the form ( f(x) = \frac{p(x)}{q(x)} ) where both ( p(x) ) and ( q(x) ) are polynomials and ( q(x) \neq 0 ).
Standard Form
: Typically includes a polynomial in the numerator and denominator.
Example
: Inverse variation function ( f(x) = \frac{a}{x} ) is a rational function.
Parent Graph of Rational Functions
Parent Function
: ( f(x) = \frac{1}{x} ).
Graph Shape
: A hyperbola consisting of two symmetrical parts called branches.
Domain and Range
: All non-zero real numbers.
Domain
: ((-\infty, 0) \cup (0, \infty))
Range
: ((-\infty, 0) \cup (0, \infty))
Asymptotes
Asymptotes for ( g(x) = \frac{a}{x} )
: Same as the parent function when ( a \neq 0 ).
Labeling Asymptotes
: Habit of labeling them; typically ( x = 0 ) and ( y = 0 ) for the parent function.
Graphing Without a Calculator
Strategy
: Start with critical points; avoid values that make the denominator zero.
Example Points
: ((-1, -2), (-2, -1), (-4, -0.5)).
Symmetry
: Recognize symmetry about ( y = x ) and ( y = -x ).
Graphing Tips
: Make sure branches hug but don't cross the asymptotes.
Translating Graphs
Translation Concepts
:
( x - h ) controls horizontal shift.
( +k ) controls vertical shift.
( x - 3 ) means shift right 3; ( x + 4 ) means shift left 4.
Example Problems
Example 1: Basic Function
T-Chart Points
: ((-6, -2.5), (-3, -3), (1, 1), (3, -1)).
Graph Characteristics
: Asymptotes at ( x = 0 ) and ( y = -2 ).
Domain
: ((-\infty, 0) \cup (0, \infty))
Range
: ((-\infty, -2) \cup (-2, \infty))
Example 2: Complex Function
T-Chart Points
: ((-6, 0.5), (-3, -1), (-2, -0.5)).
Asymptote Location
: Vertical ( x = -4 ), horizontal ( y = 0 ).
Domain
: ((-\infty, -4) \cup (-4, \infty))
Range
: ((-\infty, 0) \cup (0, \infty))
Conclusion
General Approach
: Use T-charts for accurate plotting.
Asymptotes
: Key to understanding the graph behavior.
Translations
: Affect graph's position but not its basic shape.
Practice
: Essential for mastering graphing without calculators.
π
Full transcript