Jul 17, 2024
Given: Perimeter = 39
Let sides be A, B, C
Transform sides to odd: A = 2a - 1, B = 2b - 1, C = 2c - 1
Equation: 2a - 1 + 2b - 1 + 2c - 1 = 39
2a + 2b + 2c = 42
⟹ a + b + c = 21
Total number of triangles for a + b + c
with odd perimeter,
[\frac{(a+b+c+3)^2}{48}]
a + b + c = 21
, solution is:
37 - 12 = 25
For any triangle ABC:
[rac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}]
For any triangle ABC, cosine of angle can be derived using sides:
[\cos A = \frac{b^2 + c^2 - a^2}{2bc}]
[\cos B = \frac{a^2 + c^2 - b^2}{2ac}]
[\cos C = \frac{a^2 + b^2 - c^2}{2ab}]
Total angles: ( \angle Q + \angle R + \angle P = 180° )
With ( \angle Q + \angle R = 120° ), ( \angle P = 60° )
Use cosine rule to find QR:
[\cos 60° = \frac{9^2 + 12^2 - QR^2}{2 \times 9 \times 12}] ⟹ (QR = 3\sqrt{13})
Use area and angle bisector theorem for PM calculation:
[\text{Area} = \frac{1}{2}ab\sin \theta]
(PM = \frac{36\sqrt{3}}{7})