May 4, 2025
u
.u
is chosen such that its derivative, du
, simplifies the integral.x
terms must be converted into terms of u
.4x * (x^2 + 5)^3
u
:
u = x^2 + 5
du = 2x dx
dx
: dx = du / (2x)
4x * u^3 * (du / 2x)
2 * ∫u^3 du
2 * (u^4 / 4) + C
1/2 * u^4 + C
1/2 * (x^2 + 5)^4 + C
8 cos(4x) dx
u
:
u = 4x
du = 4 dx
dx
: dx = du / 4
8 cos(u) * (du / 4)
2 ∫cos(u) du
2 sin(u) + C
2 sin(4x) + C
u
as a part of the integrand that, when derived, simplifies the integration.dx
in terms of du
and substitute in the integrand.u
.x^3 e^(x^4)
u
: u = x^4
u
and solve integral.1/4 * e^(x^4) + C
8x * √(40 - 2x^2) dx
u
: u = 40 - 2x^2
u
, solve integral.-4/3 * (40 - 2x^2)^(3/2) + C
x^3 / (2 + x^4)^2
u
: u = 2 + x^4
-1/(4(2 + x^4)) + C
sin^4(x) * cos(x) dx
u
: u = sin(x)
u
substitution.1/5 * sin^5(x) + C
u
and convert the entire integrand into terms of u
.