Coconote
AI notes
AI voice & video notes
Try for free
✏️
Converting Polar Equations to Rectangular Equations
Jul 11, 2024
Converting Polar Equations to Rectangular Equations
Key Formulas
Right Triangle Relationships
:
[x^2 + y^2 = r^2]
[x = r \cos(\theta)]
[y = r \sin(\theta)]
[\tan(\theta) = \frac{y}{x}]
Distinguishing Between Polar and Rectangular Equations
Polar Equations
: Involve variables ( r ) and ( \theta ).
Example: ( r = 5 \sin(\theta) )
Example: ( r = 7 )
Example: ( \theta = \frac{\pi}{4} )
Rectangular Equations
: Involve variables ( x ) and ( y ).
Example: ( x^2 + y^2 = 4 )
Example: ( x = 3 )
Example: ( x^2 = 4y )
Converting Examples
Example 1: ( r = 7 )
Square both sides: ( r^2 = 49 )
Use ( x^2 + y^2 = r^2 ):
( x^2 + y^2 = 49 )
Example 2: ( r = 5 )
Similar to Example 1:
( x^2 + y^2 = 25 )
Example 3: ( \theta = \frac{\pi}{4} )
Take the tangent of both sides: ( \tan(\theta) = 1 )
Use ( \tan(\theta) = \frac{y}{x} ):
( \frac{y}{x} = 1 ) ⟹ ( y = x )
Example 4: ( \theta = 0 )
Take the tangent of both sides: ( \tan(0) = 0 )
Use ( \frac{y}{x} = 0 ):
( y = 0 )
Example 5: ( \theta = \frac{\pi}{2} )
( \tan(\theta) ) is undefined
For ( \frac{y}{x} ) to be undefined, ( x = 0 )
Answer: ( x = 0 )
Example 6: ( r \sin(\theta) = 5 )
Use ( y = r \sin(\theta) ):
( y = 5 )
Similarly, ( r \cos(\theta) = 4 ) ⟹ ( x = 4 )
Example 7: ( r = 3 \csc(\theta) )
( \csc(\theta) = \frac{1}{\sin(\theta)} )
Multiply both sides by ( \sin(\theta) ):
( r \sin(\theta) = 3 )
( y = 3 )
Example 8: ( r = 4 \sec(\theta) )
( \sec(\theta) = \frac{1}{\cos(\theta)} )
Multiply both sides by ( \cos(\theta) ):
( r \cos(\theta) = 4 )
( x = 4 )
Example 9: ( r = 3 \sin(\theta) )
Multiply both sides by ( r ):
( r^2 = 3r \sin(\theta) )
( x^2 + y^2 = 3 y )
Example 10: ( r = 4 \cos(\theta) )
Multiply both sides by ( r ):
( r^2 = 4r \cos(\theta) )
( x^2 + y^2 = 4x )
Example 11: ( r = 3 \cos(\theta) + 5 \sin(\theta) )
Multiply both sides by ( r ):
( r^2 = 3r \cos(\theta) + 5r \sin(\theta) )
( x^2 + y^2 = 3x + 5y )
Example 12: ( r = \frac{5}{2 \cos(\theta) + 3 \sin(\theta)} )
Multiply both sides by ( 2 \cos(\theta) + 3 \sin(\theta) ):
( r(2 \cos(\theta) + 3 \sin(\theta)) = 5 )
( 2x + 3y = 5 )
Example 13: ( r^2 \sin(2 \theta) = 8 )
Use double angle formula: ( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) )
Divide by 2:
( r^2 \sin(\theta) \cos(\theta) = 4 )
( y \cdot x = 4 ) ⟹ ( y = \frac{4}{x} )
Example 14: ( r = \frac{8}{\cos(\theta)} )
Multiply both sides by ( \cos(\theta) ):
( r \cos(\theta) = 8 )
( x = 8 )
Example 15: ( r = \frac{5 \cos(\theta)}{\sin^2(\theta)} )
Multiply both sides by ( \sin(\theta) ):
( r \sin(\theta) = \frac{5 \cos(\theta)}{\sin(\theta)} )
( y = 5 \cot(\theta) )
( y^2 = 5x )
Example 16: ( r = \sin(\theta) \cos^2(\theta) )
Multiply both sides by ( r^3 ):
( r^4 = r^3 \sin(\theta) \cos^2(\theta) )
( (x^2 + y^2)^2 = x y x ) ⟹ ( x^2 + y^2 = x \sqrt{y} )
📄
Full transcript