📘

Essential AP Calculus AB Review

May 6, 2025

AP Calculus AB Cram Sheet

Definition of Derivatives

  • Derivative Function:
    • $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
  • Derivative at a Point:
    • $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$
    • Represents the instantaneous rate of change, slope of tangent line, and slope of curve at $x = a$.

Derivative Formulas

  • Constant Rule: $\frac{d}{dx}(k) = 0$
  • Constant Multiple Rule: $\frac{d}{dx}(kf(x)) = kf'(x)$
  • Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$
  • Sum/Difference Rule: $\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$
  • Product Rule: $\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$
  • Quotient Rule: $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$
  • Trigonometric Derivatives:
    • $\frac{d}{dx}\sin(f(x)) = \cos(f(x))f'(x)$
    • $\frac{d}{dx}\cos(f(x)) = -\sin(f(x))f'(x)$
    • $\frac{d}{dx}\tan(f(x)) = \sec^2(f(x))f'(x)$
  • Exponential and Logarithmic Derivatives:
    • $\frac{d}{dx}e^{f(x)} = e^{f(x)}f'(x)$
    • $\frac{d}{dx}\ln(f(x)) = \frac{1}{f(x)}f'(x)$
    • $\frac{d}{dx}a^{f(x)} = a^{f(x)}\ln(a)f'(x)$

Critical Points

  • A critical point occurs where $f'(c) = 0$ or $f'(c)$ is undefined.

Tangents and Normals

  • Tangent Line: $y - f(a) = f'(a)(x - a)$
  • Normal Line: $y - f(a) = -\frac{1}{f'(a)}(x - a)$

Increasing/Decreasing Functions

  • Increasing if $f'(x) > 0$ on interval.
  • Decreasing if $f'(x) < 0$ on interval.

Maxima, Minima, and Inflection Points

  • Local Minimum: $f'(x)$ changes from negative to positive.
  • Local Maximum: $f'(x)$ changes from positive to negative.
  • Concavity:
    • Concave up if $f''(x) > 0$
    • Concave down if $f''(x) < 0$
  • Point of Inflection: $f''(x)$ changes sign.

Related Rates

  • Differentiate related variables with respect to time.

Approximating Areas

  • Definite Integral: Approximated by dividing the area into strips (rectangles/trapezoids) and summing the areas.
  • Methods:
    • Left Sum
    • Right Sum
    • Midpoint Sum
    • Trapezoidal Rule: Average of left and right sum approximations.

Antiderivatives

  • Indefinite Integral: $F(x) + C$ where $F'(x) = f(x)$.

Integration Formulas

  • Power Rule: $\int x^n dx = \frac{x^{n+1}}{n+1} + C$
  • Trigonometric Integrals:
    • $\int \cos(x) dx = \sin(x) + C$
    • $\int \sin(x) dx = -\cos(x) + C$
  • Exponential and Logarithmic Integrals:
    • $\int e^x dx = e^x + C$
    • $\int a^x dx = \frac{a^x}{\ln(a)} + C$

Fundamental Theorems of Calculus

  • First Theorem: Relates definite integral to antiderivative.
  • Second Theorem: Derivative of integral function returns the original function.

Definite Integral Properties

  • Properties:
    • $\int_a^a f(x) dx = 0$
    • $\int_a^b f(x) dx = -\int_b^a f(x) dx$

Areas and Volumes

  • Area Between Curves: $\int_a^b (f(x) - g(x)) dx$
  • Volume of Revolution (Disks/Washers):
    • Disks: $\pi \int_a^b [f(x)]^2 dx$
    • Washers: $\pi \int_a^b ([R(x)]^2 - [r(x)]^2) dx$

Arc Length

  • Arc length of $y = f(x)$ from $x = a$ to $x = b$: $\int_a^b \sqrt{1 + [f'(x)]^2} dx$