Coconote
AI notes
AI voice & video notes
Try for free
Master's Theorem Lecture Notes
May 30, 2024
Master Theorem for Dividing Functions
General Form
Recurrence relation: $T(n) = aT\left(\frac{n}{b}\right) + f(n)$
Assumptions:
$a \geq 1$
$b > 1$
$f(n) = \Theta(n^k (\log n)^p)$
Key values:
$\log_b a$
$k$ (power of $n$)
Cases
Case 1: $
log_b a > k$
Solution: $\Theta(n^{\log_b a})$
Example:
$T(n) = 2T\left(\frac{n}{2}\right) + 1$
$a = 2$, $b = 2$
$f(n) = \Theta(1) = n^0 \log n^0$
$ log_2 2 = 1, k = 0$, so $\Theta(n^1) = \Theta(n)$
Case 2: $
log_b a = k$
Subcases:
If $p > -1$, Solution: $\Theta(n^k (\log n)^{p+1})$
If $p = -1$, Solution: $\Theta(n^k \log(\log n))$
If $p < -1$, Solution: $\Theta(n^k)$
Example:
$T(n) = 2T\left(\frac{n}{2}\right) + n$
$ log_2 2 = 1, k = 1$ so $f(n) = n$
$p = 0$, thus $\Theta(n \log n)$
$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\log n}$
$ log_2 2 = 1, k = 1$
$p = -1$, thus $\Theta(n \log (\log n))$
Case 3: $
log_b a < k$
Subcases:
If $p \geq 0$, Solution: $\Theta(n^k (\log n)^p)$
If $p < 0$, Solution: $\Theta(n^k)$
Example:
$T(n) = T\left(\frac{n}{2}\right) + n^2$
$ log_1 2 < 2$, $k = 2$, no log term
Solution: $\Theta(n^2)$
$T(n) = 2T\left(\frac{n}{2}\right) + n^3$
$ log_2 2 = 1$, $k = 3$ (greater)
Solution: $\Theta(n^3)$
Summary of Applications
Use $\log_b a$ and $k$ to determine the case.
Apply the appropriate solution based on comparisons.
Examples illustrate how to extract values and find solutions.
📄
Full transcript