Jun 1, 2024
N = a^L.N = a^LL = log_a(N)N = a^L implies L = log_a(N).Base Change Theorem: Logarithmic change of base
log_a(N) = log_b(N) / log_b(a) for any base b > 0 and b тЙа 1.Negative Base Property
log_a(1/N) = -log_a(N)log_3(1/9) = -2Sum Property
log_a(N1 * N2) = log_a(N1) + log_a(N2)Difference Property
log_a(N1 / N2) = log_a(N1) - log_a(N2)Power Property
log_a(N^k) = k * log_a(N)k is odd: No absolute value neededk is even: Absolute value neededEquality and Uniqueness of Logs
log_a(a) = 1 and log_a(1) = 0a^L = N then L = log_a(N).Interchanging Bases and Exponents
A^(log_A(N)) = NA^(log_B(N)) = N^(log_B(A))Common Logs (Base 10)
log(x) for base 10 logs.Natural Logs (Base e)
ln(x) for natural logs with base e.ln(x) = log_e(x).Prime Factorization Method
logтВВ(180), break 180 into prime factors: 180 = 2┬▓ * 3┬▓ * 5Equating Bases and Exponents
log_a(N^k) = k * log_a(N) only if N is to the power k.(log_a(N))^k is not the same as the above.*Basic Applications
log_2(16) = 4Complex Mixed Problems