📐

Understanding Basic Trigonometric Functions

Sep 1, 2024

Lecture Notes: Basic Trigonometric Functions

Introduction

  • Discussion on basic trigonometric functions: sine, cosine, tangent, cotangent, secant, cosecant.
  • Unit circle used to illustrate trigonometric functions.
  • Coordinates (x, y) on unit circle relate to trigonometric functions: (cosine θ, sine θ).

Trigonometric Functions and Right Triangles

  • Right triangle components: hypotenuse (HYP), adjacent (ADJ), opposite (OPP).
  • Projections on axes:
    • Sine (θ) = opposite/hypotenuse
    • Cosine (θ) = adjacent/hypotenuse

Tangent and Cotangent

  • Tangent (θ) = opposite/adjacent or sine(θ)/cosine(θ)
  • Cotangent (θ) = cosine(θ)/sine(θ) (reciprocal of tangent)

Secant and Cosecant

  • Secant (θ) = 1/cosine(θ)
  • Cosecant (θ) = 1/sine(θ)

Graphs and Domains

  • Trigonometric functions are periodic.

Sine Function

  • Domain: (-∞, ∞)
  • Key points: 0 at 0, π, 2π; 1 at π/2; -1 at 3π/2.

Cosine Function

  • Domain: (-∞, ∞)
  • Starts at 1.
  • Key points: 0 at π/2, 3π/2; -1 at π.

Tangent Function

  • Domain: all real numbers except π/2 + nπ, where n is an integer.
  • Vertical asymptotes at points where cosine(θ) = 0.

Cotangent Function

  • Domain: all real numbers except nπ.
  • Vertical asymptotes at points where sine(θ) = 0.

Secant Function

  • Domain: all real numbers except π/2 + nπ.

Cosecant Function

  • Domain: all real numbers except nπ.

Special Angles and Values

  • Important angles: 0, π/6, π/4, π/3, π/2.
  • Memorization of sine and cosine values at these angles.
  • Relationships and patterns between sine and cosine values.

Sign of Trigonometric Functions by Quadrant

  • Quadrant I: All functions are positive.
  • Quadrant II: Sine and cosecant positive.
  • Quadrant III: Tangent and cotangent positive.
  • Quadrant IV: Cosine and secant positive.

Odd and Even Functions

  • Even functions: Cosine and secant.
  • Odd functions: Sine, tangent, cotangent, cosecant.

Pythagorean Identities

  1. sin²(t) + cos²(t) = 1.
  2. 1 + tan²(t) = sec²(t).
  3. 1 + cot²(t) = csc²(t).

Examples

  • Calculate exact values for trigonometric functions at given angles.
  • Use of reference numbers and quadrant information to determine signs.
  • Examples include tangent of 5π/6, 7π/6, 11π/6, sine and cosine of 2π/3.

Conclusion

  • Importance of memorizing formulas, values, and their signs.
  • Encouragement to pause and work through problems independently for better understanding.