📐

Essential Trigonometric Identities Guide

Aug 6, 2024

Trigonometric Identities Overview

Introduction

  • Common trig identities useful for trigonometry courses.
  • Applicable for both beginners and exam preparation.

Key Trigonometric Ratios (SOHCAHTOA)

  1. Sine (sin):
    [ \sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}} ]
  2. Cosine (cos):
    [ \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} ]
  3. Tangent (tan):
    [ \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} ]

Reciprocal Identities

  • Cosecant (csc):
    [ \csc(\theta) = \frac{1}{\sin(\theta)} ]
  • Secant (sec):
    [ \sec(\theta) = \frac{1}{\cos(\theta)} ]
  • Cotangent (cot):
    [ \cot(\theta) = \frac{1}{\tan(\theta)} ]

Example Problem: 3-4-5 Triangle

  • Sine:
    [ \sin(\theta) = \frac{4}{5} ]
  • Cosine:
    [ \cos(\theta) = \frac{3}{5} ]
  • Tangent:
    [ \tan(\theta) = \frac{4}{3} ]

Quotient Identities

  • [ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} ]
  • [ \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} ]

Pythagorean Identities

  1. [ \sin^2(\theta) + \cos^2(\theta) = 1 ]
  2. [ 1 + \cot^2(\theta) = \csc^2(\theta) ]
  3. [ 1 + \tan^2(\theta) = \sec^2(\theta) ]

Even and Odd Functions

  • Even Functions:
    • Cosine (cos)
    • Secant (sec)
  • Odd Functions:
    • Sine (sin)
    • Tangent (tan)
    • Cosecant (csc)
    • Cotangent (cot)

Cofunction Identities

  • [ \cos(\theta) = \sin(90^\circ - \theta) ]
  • [ \sin(\theta) = \cos(90^\circ - \theta) ]
  • Other cofunction identities include secant-cosecant and tangent-cotangent pairs.

Double Angle Identities

  1. [ \sin(2\theta) = 2\sin(\theta)\cos(\theta) ]
  2. [ \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) ]
  3. [ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} ]

Half Angle Identities

  1. [ \sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos(\theta)}{2}} ]
  2. [ \cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 + \cos(\theta)}{2}} ]
  3. [ \tan\left(\frac{\theta}{2}\right) = \frac{\sqrt{1 - \cos(\theta)}}{1 + \cos(\theta)} ]

Sum and Difference Identities

  1. [ \sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta) ]
  2. [ \cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta) ]
  3. [ \tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)} ]

Power Reducing Formulas

  1. [ \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} ]
  2. [ \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} ]
  3. [ \tan^2(\theta) = \frac{1 - \cos(2\theta)}{1 + \cos(2\theta)} ]

Product to Sum Formulas

  1. [ \sin(\alpha)\sin(\beta) = \frac{1}{2}[\cos(\alpha - \beta) - \cos(\alpha + \beta)] ]
  2. [ \cos(\alpha)\cos(\beta) = \frac{1}{2}[\cos(\alpha - \beta) + \cos(\alpha + \beta)] ]
  3. [ \sin(\alpha)\cos(\beta) = \frac{1}{2}[\sin(\alpha + \beta) + \sin(\alpha - \beta)] ]

Law of Sines

  • [ \frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} ]

Law of Cosines

  • [ c^2 = a^2 + b^2 - 2ab\cos(C) ]

Area of a Triangle

  • Area = [ \frac{1}{2}ab\sin(C) ]
  • Heron's Formula:
    • [ s = \frac{a + b + c}{2} ]
    • Area = [ \sqrt{s(s - a)(s - b)(s - c)} ]

Conclusion

  • Overview of essential trigonometric identities and formulas for course and exam preparation.