Coconote
AI notes
AI voice & video notes
Try for free
📐
Essential Trigonometric Identities Guide
Aug 6, 2024
Trigonometric Identities Overview
Introduction
Common trig identities useful for trigonometry courses.
Applicable for both beginners and exam preparation.
Key Trigonometric Ratios (SOHCAHTOA)
Sine (sin)
:
[ \sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}} ]
Cosine (cos)
:
[ \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} ]
Tangent (tan)
:
[ \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} ]
Reciprocal Identities
Cosecant (csc)
:
[ \csc(\theta) = \frac{1}{\sin(\theta)} ]
Secant (sec)
:
[ \sec(\theta) = \frac{1}{\cos(\theta)} ]
Cotangent (cot)
:
[ \cot(\theta) = \frac{1}{\tan(\theta)} ]
Example Problem: 3-4-5 Triangle
Sine
:
[ \sin(\theta) = \frac{4}{5} ]
Cosine
:
[ \cos(\theta) = \frac{3}{5} ]
Tangent
:
[ \tan(\theta) = \frac{4}{3} ]
Quotient Identities
[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} ]
[ \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} ]
Pythagorean Identities
[ \sin^2(\theta) + \cos^2(\theta) = 1 ]
[ 1 + \cot^2(\theta) = \csc^2(\theta) ]
[ 1 + \tan^2(\theta) = \sec^2(\theta) ]
Even and Odd Functions
Even Functions
:
Cosine (cos)
Secant (sec)
Odd Functions
:
Sine (sin)
Tangent (tan)
Cosecant (csc)
Cotangent (cot)
Cofunction Identities
[ \cos(\theta) = \sin(90^\circ - \theta) ]
[ \sin(\theta) = \cos(90^\circ - \theta) ]
Other cofunction identities include secant-cosecant and tangent-cotangent pairs.
Double Angle Identities
[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) ]
[ \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) ]
[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} ]
Half Angle Identities
[ \sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos(\theta)}{2}} ]
[ \cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 + \cos(\theta)}{2}} ]
[ \tan\left(\frac{\theta}{2}\right) = \frac{\sqrt{1 - \cos(\theta)}}{1 + \cos(\theta)} ]
Sum and Difference Identities
[ \sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta) ]
[ \cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta) ]
[ \tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)} ]
Power Reducing Formulas
[ \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} ]
[ \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} ]
[ \tan^2(\theta) = \frac{1 - \cos(2\theta)}{1 + \cos(2\theta)} ]
Product to Sum Formulas
[ \sin(\alpha)\sin(\beta) = \frac{1}{2}[\cos(\alpha - \beta) - \cos(\alpha + \beta)] ]
[ \cos(\alpha)\cos(\beta) = \frac{1}{2}[\cos(\alpha - \beta) + \cos(\alpha + \beta)] ]
[ \sin(\alpha)\cos(\beta) = \frac{1}{2}[\sin(\alpha + \beta) + \sin(\alpha - \beta)] ]
Law of Sines
[ \frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} ]
Law of Cosines
[ c^2 = a^2 + b^2 - 2ab\cos(C) ]
Area of a Triangle
Area = [ \frac{1}{2}ab\sin(C) ]
Heron's Formula
:
[ s = \frac{a + b + c}{2} ]
Area = [ \sqrt{s(s - a)(s - b)(s - c)} ]
Conclusion
Overview of essential trigonometric identities and formulas for course and exam preparation.
📄
Full transcript