🔬

Scientific Notation in Chemistry

Jul 29, 2024

Basic Concepts of Chemistry: Scientific Notation

Introduction

  • Previous Topics Covered:
    • Introduction to Chemistry
    • Matter and its classification
    • Properties of matter
    • Physical quantities and their units

Importance of Scientific Notation

  • Used to handle very small or very large numbers
  • Essential for solving numericals in physical chemistry, especially in competitive exams

What is Scientific Notation?

  • Definition: A simplified way to represent very large or very small numbers
  • Format: n x 10^n
    • n (base) is a number between 1 and 9
    • 10^n (exponent) can be positive or negative

Example: Mole Concept

  • Chemical Reaction: 2 moles of H2 + 1 mole of O2 → 2 moles of H2O
  • Mole: A counting unit similar to a dozen
  • Value of 1 Mole: 6.022 x 10^23
  • Scientific Notation Example:
    • Original number: 602200000000000000000000
    • Scientific notation: 6.022 x 10^23

Writing Numbers in Scientific Notation

  • Very Large Number:
    • Example: 602200000000000000000000
    • Scientific notation: 6.022 x 10^23
  • Very Small Number:
    • Example: 0.000000000000385
    • Scientific notation: 3.85 x 10^-12

Rules for Shifting Decimal Points

  • Left Shift: Decimal point to left → positive exponent
  • Right Shift: Decimal point to right → negative exponent
  • Example:
    • Original: 0.000000000385
    • Shift decimal to get: 3.85 x 10^-12

Examples of Scientific Notation Conversion

  1. 4.8 million:
    • Original: 4800000
    • Scientific notation: 4.8 x 10^-5
  2. 2340000:
    • Original: 2340000
    • Scientific notation: 2.34 x 10^6
  3. 8008:
    • Original: 8008
    • Scientific notation: 8.008 x 10^3
  4. 500:
    • Original: 500
    • Scientific notation: 5.0 x 10^2
  5. 0.00000060:
    • Original: 0.00000060
    • Scientific notation: 6.0 x 10^8

Arithmetic Operations with Scientific Notation

Multiplication

  • Formula: (a x 10^m) x (b x 10^n) = (a x b) x 10^(m+n)
  • Example: 2 x 10^5 * 3 x 10^6
    • Solution: (2 x 3) x 10^(5+6) = 6 x 10^11*

Division

  • Formula: (a x 10^m) / (b x 10^n) = (a / b) x 10^(m-n)
  • Example: 10 x 10^-6 / 2 x 10^5
    • Solution: (10 / 2) x 10^(-6 - 5) = 5 x 10^-11

Addition and Subtraction

  • Rule: Exponents must be the same
  • Addition Example: 6.1 x 10^4 + 2.2 x 10^3
    • Convert to the same exponent: 6.1 x 10^4 + 0.22 x 10^4
    • Solution: (6.1 + 0.22) x 10^4 = 6.32 x 10^4
  • Subtraction Example: 4 x 10^-2 - 2 x 10^-3
    • Convert to the same exponent: 4 x 10^-2 - 0.2 x 10^-2
    • Solution: (4 - 0.2) x 10^-2 = 3.8 x 10^-2

Summary

  • Scientific Notation simplifies representation of extremely large or small numbers.
  • Essential for dealing with measurements in chemistry.
  • Used extensively in physical chemistry for solving numerical problems.

Next Topic

  • Significant Figures