Transcript for:
Syre-Base Kemi: Amfolyt-Ligningen

Velbekomme til video nummer 5 om syre og basekemi på B-niveau. I denne video skal vi snakke om amfolyt-ligningen, så det betyder, at vi skal udlede den og snakke om dens begrænsninger, og til sidst også anvende den i et regneeksempel. Så amfolyter er nogle stoffer, vi har kigget på før. Det var jo stoffer, hvis karakteristiske egenskaber var, at de både kunne reagere som en syre eller en base. Det er mange stoffer der er. Vi snakker om vand, som er lidt miskendt med denne autohydroanalyse. Derudover er aminosyre og forskellige afarter af polyhydronis syre også amfolytter. Når man afdager, at der er polyhydroner som syre, så er det fordi, at når man har polyhydronis syre, så smider den nogle hydroner. Undervejs vil der være nogle produkter i den rækkelig, som både kan reagere som syre og base. Et eksempel har vi hernede, som vi også havde i sidste video med kulsyre. som altså har syreformen her, kan smide en hydron, lave oxonium, og så lave den her hydrogenkarbonation, som altså er en amfolyt, fordi den kan jo, man kan sige, både reagere tilbage i ligevægten her, og altså optage en hydron, men den kan også smide en hydron i en syreaktion med vand, og så lave karbonationen her som baseform. Så det vi vil i den her video, det er, man kan sige, at kigge på opløsninger, hvor I da... kun er amfolyter. Så det vil sige, at som udgangspunkt, der ser vi altså på opløsninger, hvor der kun er amfolyter, og ikke nogen af den korresponderende syre og basebar. Det bliver selvfølgelig dannet, når sådan en ligevægt indstiller sig, men vi prøver at tage udgangspunkt i, at der kun er amfolyter i til at starte med. Det vil sige, at hvis vi har en opløsning kun bestående af amfolyter, så må der være forskellige mulige reaktioner. En reaktion kunne være, at amfolyten kunne reagere med vand, og så optage en hidron, gå over på sin syreform, og så lave noget hydroxid. Den kan også lave en syrereaktion, hvor den smider en hidron hen på et vandmolekyl, og så bliver det sin baseform. Men som det så også er muligt for lige præcis amfolyter, der kan man også godt forestille sig, at to amfolyter kunne reagere med vand. Sådan så er den ene afgav en hydron til den anden, hvormed den ene vil blive til syreformen, og den anden vil blive til bageformen. Og det er altså uden at man kan sige bruge noget vand overhovedet. Og hvis vi har de her tre reaktioner nede i sådan en amfolytopløsning, så kan vi jo se, at den nederste her må være den, der forekommer langt mest af de to andre, hvis det altså er sådan, at amfolyten vi har både er en stærkere syre og en stærkere base end vand. Fordi vi har jo kigget på før, at når man tilsatte fx en stærk syre ned til et puffedysystem, så reagerede den stærke syre med den stærkeste base, der var. Og man kan sige, brug det her først. Og det er sådan set også det, der sker her, så hvis man altså har en amfolytopløsning, Der er både stærker som syre og base end vand, så i stedet for at amfolyten går ind og reagerer med vand, så går den ind og reagerer med sig selv, fordi hvis den skal reagere som syre, så er det også den stærkeste base, der er tilfældet. Så det betyder, at vi kan antage, at det er det, vi gør, når vi laver amfolytning, at det kun er den her reaktion, der sker. De to andre her sker så lidt, at dem tager vi bort fra. Når vi gør det, så sker det meget smart, at vi kan se, at den eneste måde, vi kan få dannet noget, hvad syren og basen på, det er ved, at man kan sige den her reaktion. Så det betyder, at forholdet mellem syre og base må være, at koncentrationen af de to er lige store, fordi forholdet her jo er 1 til 1. Det skal vi bruge lige om lidt. For det vi så gerne vil, det er, at vi vil gerne udlede den her påforligning, som vi forhåbentlig kan udregne nogle pH-værdier i de her amfolyt-systemer. Og vi starter lidt random med bare at sige, at vi kigger på syre-reaktionen, eller syreformens reaktion med vand. Så den laver en amfolyt. Og amfolytens reaktion med vand, hvor den så laver en base. Og lad os prøve at skrive de to ks-værdier op, og så gange dem med hinanden. Så lad os se, hvad der sker. Ks-værdien for syren må være amfolytformens koncentration gange auksoniumkoncentrationen divideret med syrens koncentration. Der er vi her. Og ks-værdien for amfolyten må være koncentrationen af baseformen gange koncentrationen af auksoniumioner divideret med koncentrationen. Den her er en amfolyter, så den har vi her. Og de to tager vi altså gange med hinanden, og det betyder, at vi kan sætte dem på en fælles brøkstreg. Og det vi kan se her, det er, at amfolytskoncentrationen optræder både over og under. Det betyder, at den kan vi se, det kan gå ud med hinanden. Så har vi en lidt simplere ligning. Så har vi den her. Men det vi jo lige kiggede på var, at i vores systemer der var koncentration af syre og koncentration af base jo lige med hinanden. Så det vil sige, om at vel kan vi sige, at det her koncentration af base, der kunne vi skrive til stedet, skrive koncentration af syre. Og så kan vi se, så kan de to gå ud med hinanden. Rigtig smart, så har vi et endnu nemmere udtryk. Og det vi så gerne vil gøre med det her udtryk, det er, at nu vil vi gerne tage logaritmen på venstre side og på højre side af det her udtryk. Så det vil sige, at det her er altså logaritmen af Ks'syre gange Ks'termofolyt, aligmede logaritmen til. koncentration af auksonium gange med koncentration af auksonium. Og så bruger vi logaritmeregnreglen, at når man har en logaritme af et eller andet produkt, så kan man altså tage og skrive det op, så man tager hver del af produktet og skriver det som en plusstykke i stedet for. Det vil sige, at log af ks'er syren gange ks'er amfolytten kan blive til log af ks plus log af ks'er amfolytten. Og det er altså lige med logaritmen, eller log af. koncentrationen af oxonium plus log af koncentrationen af oxonium, og det er jo bare to gange logaritmen af koncentrationen af oxonium. Der er to af dem. Og det vi kan se nu, det er, at vi lidt ligesom da vi kigger på påforligningen, at vi har nogle ting. Vi kan begynde at genkende, fordi vi har jo defineret, at pH er minuslogaritmen til koncentrationen af oxonium, og PKS er minuslogaritmen til koncentrationen af KS. Og det har vi jo næsten her. Så det vi kan se, det er, at vi mangler nogle minuser her foran, så det betyder, at de udtryk, vi har her, det må være minus pH og minus pKs, de her forskellige udtryk. Så det betyder, at vi kan skrive minus pKs til syren, minus pKs til lankolyten, og den er altså lige med minus 2 gange pH. Og hvis vi dividerer med minus 2 hele vejen igennem, så kan vi se, at så går minus 2 ud her, og så får man 2 tager ned under her, og så... og minuserne her, eller de bliver lavet til plusser i stedet for. Så det vil sige, at påforligningen, det er altså det udtryk, vi har stående her, hvor at nede i et amfolyt system, der kan vi altid finde pH, ved at tage PKS'en af syren, plusset med PKS'en af amfolytten, og de bliver lavet med 2. Det er jo ret let til. Spørgsmålet var, hvornår vi kunne bruge den her linje, for den havde nogle begrænsninger. Så det, man kan sige, der var vigtigst allerførst, det var, at vi sagde, at for det her gældte, der skulle der være lige meget syre og lige meget base nede i vores opløsning. Det kan man enten opnå ved, at man laver en ren opløsning, hvor man kun hælder amfolyten ned i. Så har man jo ikke, man kan sige på forhånd, noget af den baseform eller syreform. Men det, der også kunne være tilfælde, var, at man kunne også opnå den her tilstand i et. et ekvivalenspunkt under en titrering. Så hvis man fx har en polyhydron syre, og at man når til et af ekvivalenspunkterne her i, så vil man jo kunne opskrive, at det vil være et ekvivalenspunkt mellem en syre og en amfolytform. Og der vil, man kan sige, der vil dog i princippet ikke være noget på syre eller baseform, der vil alting jo være på amfolytformen, og så vil der indstilles af den her ligevægt. Så der vil man også kunne bruge amfolytlinjen. Så er det vigtigt, at amfolytformen Amfolyten må ikke i sig selv være en stærk syre eller stærk base, fordi så begynder den selvfølgelig at reagere som det, i stedet for med det her fine livvækseudtryk. Og amfolyten skulle som sagt også være en stærkere syre og en stærkere base end vand. Ellers så vil amfolyten jo hellere reagere med vandet, i stedet for med sig selv. Og endelig så skal koncentrationen af amfolyten være forholdsvis høj, fordi hvis den er læng, så begynder man lidt ligesom at virke. at man begynder at skulle tage højde for fx vands-autohydrolyser, når man skal afstemme pH. Så der skal være forholdsvis meget. Godt nok. Lad os prøve et eksempel. Et eksempel på det her kunne være, hvis man tog en opløsning og lavede en ren opløsning af sin amfolyt. Så hvis man tager natriumhydrogenkarbonat, når man hælder det ned i vand, så bliver det til natrium plusioner og så til hydrogenkarbonationer. Og hydrogenkarbonat er jo, som vi har kigget på lidt før, en amfolyt. Så lad os sige, at vi gør det. Vi får en koncentration på 0,30 molar. Hvad er så pH'en i den her opløsning? Så vil vi gerne tjekke, kan vi bruge amfolytformelen? Og så skal vi jo tjekke, er PKB og PKS for amfolyten, er den? Man kan sige, at for det første er de i begge to over 0, sådan at man ikke har stærke syre og stærke baser. Og det kan vi se, at de er i begge to svage. Men vi skal også tjekke, at de er, pqs'erne her er altså undervandt pqs, både som base og syre, så det betyder, at de skal være under 14, det er de også. Så man kan sige, at indtil videre er kriterierne okay. Så slår vi også pqs'en op for syreformulen, altså for kulsyre, og så kan vi altså bruge pqs'erne. Amfolyteligningen, hvor vi tager PKS for syren, det er de 6,37, og PKS for amfolyten, det må være de 10,32. Det er jo det, hvor vi får pH 8,35. Og det, som er lidt fascinerende ved amfolyteligningen, det er, at I kan se her, at vi har kun brugt PKS, fordi vi har kun slået ting op. Vi har slet ikke brugt en koncentration med 0,30 molær. Så det betyder, at hvis man havde lavet den her udregning med 0,1 molær, 0,2 molær, eller... eller en hel molær, så vil man altså have fået den samme pH. Og det er altså en konsekvens af den simplifikation, vi har lavet, at det her gælder simpelthen ens for alle koncentrationer, så længe de er store nok. Yes, det var det. Den næste video omhandler titræringer af monohydronet syre, og bagefter er der en om titræring af polyhydronet syre, og hvis man vil have nogle opgaver eller quiz, så kan man finde nogle på Gymnasiekemi.