Coconote
AI notes
AI voice & video notes
Try for free
Understanding Polar Coordinates Concepts
Aug 2, 2024
Introduction to Polar Coordinates
Key Differences
Rectangular Coordinates:
Contains x and y variables.
Polar Coordinates:
Contains r and ( \theta ) (theta).
r:
Radius of a circle.
( \theta ):
Angle measured from the positive x-axis.
Graphing Polar Coordinates
Example: Plotting ( (3, 45^{\circ}) )
Plot circles with radii 1, 2, and 3.
Draw a ray at a 45-degree angle to the third circle (radius 3).
Positive angles are measured counter-clockwise.
Example: Plotting ( (2, \frac{3\pi}{4}) )
Convert ( \frac{3\pi}{4} ) to degrees: 135 degrees.
Identify the quadrant: Quadrant II (between 90 and 180 degrees).
Stop at the second circle (radius 2).
Negative Radius Example: Plotting ( (-2, 60^{\circ}) )
Plot ( (2, 60^{\circ}) ) first.
For negative radius, plot in the opposite direction (add 180 degrees): 240 degrees.
Another Example: Plotting ( (-3, 120^{\circ}) )
Plot ( (3, 120^{\circ}) ) in quadrant II.
For negative radius, plot in the opposite direction: 300 degrees.
Finding Equivalent Polar Coordinates
Example: ( (2, 30^{\circ}) )
Original: ( (2, 30^{\circ}) )
Second: ( (2, -330^{\circ}) ) (subtract 360 degrees).
Third: ( (-2, 210^{\circ}) ) (add 180 degrees).
Fourth: ( (-2, -150^{\circ}) ) (add or subtract as needed).
Conversion Between Polar and Rectangular Coordinates
From Polar to Rectangular
Equations:
( x = r \cos(\theta) )
( y = r \sin(\theta) )
Example: Convert ( (4, 60^{\circ}) )
( x = 4 \cos(60^{\circ}) = 2 )
( y = 4 \sin(60^{\circ}) = 2\sqrt{3} )
Result: ( (2, 2\sqrt{3}) )
From Rectangular to Polar
Equation for r:
( r = \sqrt{x^2 + y^2} )
Equation for ( \theta ):
( \theta = \arctan(\frac{y}{x}) )
Example: Convert ( (2, -4) ) to Polar
Calculate ( r = \sqrt{2^2 + (-4)^2} = 2\sqrt{5} )
Calculate angle ( \theta ) using ( \arctan(\frac{-4}{2}) ) and adjust for quadrant.
Result: ( (2\sqrt{5}, 296.56^{\circ}) )
Example: Convert ( (-5, 5\sqrt{3}) ) to Polar
Calculate ( r = 10 )
Calculate angle ( \theta = 120^{\circ} ) (in quadrant II).
Result: ( (10, 120^{\circ}) ) or ( (10, \frac{2\pi}{3}) ) in radians.
📄
Full transcript