📐

Introduction to Trigonometry and SOHCAHTOA

Jul 7, 2024

Introduction to Trigonometry and SOHCAHTOA

Overview

  • Target Audience: Students about to take trigonometry in high school or college.
  • Focus: Understanding the SOHCAHTOA mnemonic for remembering trig ratios.

SOHCAHTOA Mnemonic

  • Soh: Sine ( θ) = Opposite / Hypotenuse
  • Cah: Cosine ( θ) = Adjacent / Hypotenuse
  • Toa: Tangent ( θ) = Opposite / Adjacent

Example 1: Right Triangle 3-4-5

  • Triangle Properties: Right triangle with sides 3, 4, and 5.
  • Angle: θ identified within the triangle.
  • Sides:
    • Opposite to θ: 4
    • Adjacent to θ: 3
    • Hypotenuse: 5
  • Calculations:
    • Sine ( θ) = Opposite / Hypotenuse = 4/5
    • Cosine ( θ) = Adjacent / Hypotenuse = 3/5
    • Tangent ( θ) = Opposite / Adjacent = 4/3

Example 2: Right Triangle 5-12-13

  • Triangle Properties: Right triangle with sides 5, 12, and unknown hypotenuse.
  • Using Pythagorean Theorem: a² + b² = c²
    • 5² + 12² = c² => 25 + 144 = 169 => c = 13
  • Sides:
    • Opposite to θ: 5
    • Adjacent to θ: 12
    • Hypotenuse: 13
  • Calculations:
    • Sine ( θ) = Opposite / Hypotenuse = 5/13
    • Cosine ( θ) = Adjacent / Hypotenuse = 12/13
    • Tangent ( θ) = Opposite / Adjacent = 5/12

Special Right Triangles to Memorize

  • Common Triangles:
    • 3-4-5
    • 5-12-13
    • 8-15-17
    • 7-24-25
    • 9-40-41
    • 11-60-61

Example 3: Right Triangle 14-48-50

  • Identifying Special Right Triangle: 7-24-25 times 2.
  • Calculations:
    • Sine ( θ) = 14/50 = 7/25
    • Cosine ( θ) = 48/50 = 24/25
    • Tangent ( θ) = 14/48 = 7/24

Reciprocal Trig Ratios

  • Cosecant (csc θ) = 1 / Sine ( θ)
    • Cosecant example: csc θ = 25/7
  • Secant (sec θ) = 1 / Cosine ( θ)
    • Secant example: sec θ = 25/24
  • Cotangent (cot θ) = 1 / Tangent ( θ)
    • Cotangent example: cot θ = 24/7

Example: Sine (

θ) = 8/17

  • Objective: Find Cosine ( θ) and Tangent ( θ).
  • Right Triangle Properties: Right triangle with θ in the 1st quadrant.
  • Sides:
    • Opposite: 8
    • Hypotenuse: 17
    • Missing side: 15 (8-15-17 triangle)
  • Calculations:
    • Cosine ( θ) = 15/17
    • Tangent ( θ) = 8/15

Quadrants and Trigonometric Values

  • Quadrants Explanation: Understanding angles and trig values in different quadrants.
  • Example: Sine ( θ) = 2/5, θ between π/2 and π (2nd quadrant).
    • Use Pythagorean theorem to find missing side.
    • Results:
      • Cosine ( θ) = -√21/5
      • Tangent ( θ) = 2/-√21

Special and Reference Angles

  • Convert radians to degrees: Example – Cos(π/4).
  • Triangles to Memorize: 30-60-90 and 45-45-90 triangles.
    • Example: Cos(30°) = √3/2

Coterminal Angles

  • Example: Evaluating Cosecant (-13π/6).
    • Convert angle, use reference angles, and triangle properties.
    • Result: Cosecant = -2

ASTC Mnemonic

  • All Students Take Calculus (ASTC)
    • Quadrant I: All positive
    • Quadrant II: Sine positive
    • Quadrant III: Tangent positive
    • Quadrant IV: Cosine positive

Example Problems

  • Tangent (-120°)
    • Find reference angle, special triangle, evaluate tangent.
    • Result: Tan(-120°) = √3
  • Secant (225°)
    • Convert, find reference angle, evaluate secant.
    • Result: Sec(225°) = -√2

Conclusion

  • Tools: Utilize the concepts in the video for future study.
  • Additional Resources: Check out the provided trigonometry playlist for detailed examples and additional practice problems.
  • Call to Action: Subscribe to the channel for updates and new content.