Coconote
AI notes
AI voice & video notes
Try for free
📐
Introduction to Trigonometry and SOHCAHTOA
Jul 7, 2024
Introduction to Trigonometry and SOHCAHTOA
Overview
Target Audience
: Students about to take trigonometry in high school or college.
Focus
: Understanding the SOHCAHTOA mnemonic for remembering trig ratios.
SOHCAHTOA Mnemonic
Soh
: Sine ( θ) = Opposite / Hypotenuse
Cah
: Cosine ( θ) = Adjacent / Hypotenuse
Toa
: Tangent ( θ) = Opposite / Adjacent
Example 1: Right Triangle 3-4-5
Triangle Properties
: Right triangle with sides 3, 4, and 5.
Angle
: θ identified within the triangle.
Sides
:
Opposite to θ: 4
Adjacent to θ: 3
Hypotenuse: 5
Calculations
:
Sine ( θ) = Opposite / Hypotenuse = 4/5
Cosine ( θ) = Adjacent / Hypotenuse = 3/5
Tangent ( θ) = Opposite / Adjacent = 4/3
Example 2: Right Triangle 5-12-13
Triangle Properties
: Right triangle with sides 5, 12, and unknown hypotenuse.
Using Pythagorean Theorem
: a² + b² = c²
5² + 12² = c² => 25 + 144 = 169 => c = 13
Sides
:
Opposite to θ: 5
Adjacent to θ: 12
Hypotenuse: 13
Calculations
:
Sine ( θ) = Opposite / Hypotenuse = 5/13
Cosine ( θ) = Adjacent / Hypotenuse = 12/13
Tangent ( θ) = Opposite / Adjacent = 5/12
Special Right Triangles to Memorize
Common Triangles
:
3-4-5
5-12-13
8-15-17
7-24-25
9-40-41
11-60-61
Example 3: Right Triangle 14-48-50
Identifying Special Right Triangle
: 7-24-25 times 2.
Calculations
:
Sine ( θ) = 14/50 = 7/25
Cosine ( θ) = 48/50 = 24/25
Tangent ( θ) = 14/48 = 7/24
Reciprocal Trig Ratios
Cosecant (csc θ) = 1 / Sine ( θ)
Cosecant example: csc θ = 25/7
Secant (sec θ) = 1 / Cosine ( θ)
Secant example: sec θ = 25/24
Cotangent (cot θ) = 1 / Tangent ( θ)
Cotangent example: cot θ = 24/7
Example: Sine (
θ) = 8/17
Objective
: Find Cosine ( θ) and Tangent ( θ).
Right Triangle Properties
: Right triangle with θ in the 1st quadrant.
Sides
:
Opposite: 8
Hypotenuse: 17
Missing side: 15 (8-15-17 triangle)
Calculations
:
Cosine ( θ) = 15/17
Tangent ( θ) = 8/15
Quadrants and Trigonometric Values
Quadrants Explanation
: Understanding angles and trig values in different quadrants.
Example
: Sine ( θ) = 2/5, θ between π/2 and π (2nd quadrant).
Use Pythagorean theorem to find missing side.
Results
:
Cosine ( θ) = -√21/5
Tangent ( θ) = 2/-√21
Special and Reference Angles
Convert radians to degrees
: Example – Cos(π/4).
Triangles to Memorize
: 30-60-90 and 45-45-90 triangles.
Example
: Cos(30°) = √3/2
Coterminal Angles
Example
: Evaluating Cosecant (-13π/6).
Convert angle, use reference angles, and triangle properties.
Result
: Cosecant = -2
ASTC Mnemonic
A
ll
S
tudents
T
ake
C
alculus (ASTC)
Quadrant I
: All positive
Quadrant II
: Sine positive
Quadrant III
: Tangent positive
Quadrant IV
: Cosine positive
Example Problems
Tangent (-120°)
Find reference angle, special triangle, evaluate tangent.
Result: Tan(-120°) = √3
Secant (225°)
Convert, find reference angle, evaluate secant.
Result: Sec(225°) = -√2
Conclusion
Tools
: Utilize the concepts in the video for future study.
Additional Resources
: Check out the provided trigonometry playlist for detailed examples and additional practice problems.
Call to Action
: Subscribe to the channel for updates and new content.
📄
Full transcript