📏

Graphing Conic Sections: Circles, Ellipses, Parabolas, and Hyperbolas

Jul 18, 2024

Graphing Conic Sections: Circles, Ellipses, Parabolas, and Hyperbolas

Introduction

  • Focus on graphing conic sections: circles, ellipses, parabolas, hyperbolas.
  • Identify conic sections from equations and convert to standard form.

Graphing Circles

  • Standard Equation:
    • \( (x-h)^2 + (y-k)^2 = r^2 \)
    • Center: (h, k)
    • Radius: r
  • Examples:
    1. \( x^2 + y^2 = 9 \)
      • Center: (0,0)
      • Radius: 3
    2. \( (x-3)^2 + (y+4)^2 = 16 \)
      • Center: (3, -4)
      • Radius: 4
    3. \( (x+2)^2 + (y-3)^2 = 4 \)
      • Center: (-2, 3)
      • Radius: 2

Graphing Ellipses

  • Standard Equation:
    • Horizontal: \( \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \)
    • Vertical: \( \frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1 \)
    • a is always greater than b
  • Key Points:
    • Major axis: 2a
    • Minor axis: 2b
    • Vertices at \( (h \pm a, k) \) or \( (h, k \pm a) \)
    • Foci: \( c^2 = a^2 - b^2 \), \( (h \pm c, k) \) or \( (h, k \pm c) \)
  • Examples:
    1. \( \frac{x^2}{25} + \frac{y^2}{49} = 1 \)
      • Center: (0, 0)
      • Major axis: 14
      • Minor axis: 10
      • Foci: \( (\pm 2\sqrt{6}, 0) \)
    2. \( \frac{(x-2)^2}{16} + \frac{(y+3)^2}{9} = 1 \)
      • Center: (2, -3)
      • Major axis: 8
      • Minor axis: 6
      • Foci: \( (2 \pm \sqrt{7}, -3) \)
    3. \( \frac{(x+1)^2}{9} + \frac{(y-2)^2}{25} = 1 \)
      • Center: (-1, 2)
      • Major axis: 10
      • Minor axis: 6
      • Foci: \( (-1, 2 \pm \sqrt{16}) \)

Graphing Hyperbolas

  • Standard Equation:
    • Horizontal: \( \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \)
    • Vertical: \( \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1 \)
  • Key Points:
    • Vertices at \( (h \pm a, k) \) or \( (h, k \pm a) \)
    • Foci: \( c^2 = a^2 + b^2 \), \( (h \pm c, k) \) or \( (h, k \pm c) \)
    • Asymptotes: \( y = k \pm \frac{b}{a}(x-h) \) or \( y = k \pm \frac{a}{b}(x-h) \)
  • Examples:
    1. \( \frac{x^2}{9} - \frac{y^2}{4} = 1 \)
      • Center: (0, 0)
      • Vertices: \( (\pm 3, 0) \)
      • Foci: \( (\pm \sqrt{13}, 0) \)
      • Asymptotes: \( y = \pm \frac{2}{3}x \)
    2. \( \frac{(x+1)^2}{25} - \frac{(y-2)^2}{16} = 1 \)
      • Center: (-1, 2)
      • Vertices: \( (-6, 2), (4, 2) \)
      • Foci: \( (-1 \pm \sqrt{41}, 2) \)
      • Asymptotes: \( y-2 = \pm \frac{4}{5}(x+1) \)
    3. \( \frac{(y-2)^2}{4} - \frac{(x+3)^2}{9} = 1 \)
      • Center: (-3, 2)
      • Vertices: \( (-3, 4), (-3, 0) \)
      • Foci: \( (-3, 2 \pm \sqrt{13}) \)
      • Asymptotes: \( y-2 = \pm \frac{2}{3}(x+3) \)

Graphing Parabolas

  • Standard Equation:
    • Horizontal: \( (y-k)^2 = 4p(x-h) \)
    • Vertical: \( (x-h)^2 = 4p(y-k) \)
  • Key Points:
    • Opens right if p > 0, left if p < 0
    • Opens up if p > 0, down if p < 0
    • Focus: (h+p, k) or (h, k+p)
    • Directrix: x=h-p or y=k-p
  • Examples:
    1. \( y^2 = 8x \)
      • Vertex: (0, 0)
      • Focus: (2, 0)
      • Directrix: x=-2
    2. \( (y-2)^2 = 4(x-3) \)
      • Vertex: (3, 2)
      • Focus: (4, 2)
      • Directrix: x=2
    3. \( (x+1)^2 = -2(y-3) \)
      • Vertex: (-1, 3)
      • Focus: (-1, 5.5)
      • Directrix: y=2.5

Identifying Conic Sections from General Equations

  • Circle: \( A = C \)
    • Example: \( x^2 + 4y^2 + 8x = 0 \)
  • Ellipse: \( A \neq C \), both positive
    • Example: \( 4x^2 + 25y^2 = 100 \)
  • Hyperbola: \( A \) positive, \( C \) negative (or vice versa)
    • Example: \( 4x^2 - 9y^2 = 36 \)
  • Parabola: Only one squared term
    • Example: \( x^2 - 8x = 4y \)

Converting to Standard Form

  • Circles:
    • Example: \( 2x^2 + 8x + 2y^2 + 4y = 6 \)
      1. Group like terms: \( 2(x^2 + 4x) + 2(y^2 + 2y) = 6 \)
      2. Complete the square: \( 2((x+2)^2 - 4) + 2((y+1)^2 - 1) = 6 \)
      3. Simplify: \( (x+2)^2 + (y+1)^2 = 8 \)
  • Ellipses:
    • Example: \( 4x^2 + 25y^2 - 24x + 100y = -36 \)
      1. Group like terms: \( 4(x^2 - 6x) + 25(y^2 + 4y) = 36 \)
      2. Complete the square: \( 4((x-3)^2 - 9) + 25((y+2)^2 - 4) = 36 \)
      3. Simplify: \( \frac{(x-3)^2}{25} + \frac{(y+2)^2}{9} = 1 \)
  • Hyperbolas:
    • Example: \( 4x^2 - 9y^2 - 16x + 54y = 101 \)
      1. Group like terms: \( 4(x^2 - 4x) - 9(y^2 - 6y) = 36 \)
      2. Complete the square: \( 4((x-2)^2 - 4) - 9((y-3)^2 - 9) = 36 \)
      3. Simplify: \( \frac{(x-2)^2}{9} - \frac{(y-3)^2}{4} = 1 \)
  • Parabolas:
    • Example: \( x^2 + 6x = 4y - 1 \)
      1. Complete the square: \( (x+3)^2 - 9 = 4y - 1 \)
      2. Simplify: \( (x+3)^2 = 4(y-1/4) \)

Summary of Equations

  • Circle:
    • \( (x-h)^2 + (y-k)^2 = r^2 \)
  • Ellipse:
    • \( \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \)
  • Hyperbola:
    • \( \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \)
  • Parabola:
    • \( (x-h)^2 = 4p(y-k) \)
    • \( (y-k)^2 = 4p(x-h) \)

Key Points

  • Circle: Center (h, k), Radius r
  • Ellipse: Major/Minor Axis, Focus, Vertices
  • Hyperbola: Asymptotes, Vertices, Focus
  • Parabola: Focus, Directrix, Opens Direction

Final Notes

  • Remember Pythagorean relationships for foci in ellipses and hyperbolas.
  • Identify conic sections by their equations.
  • Practice completing square techniques for converting to standard form.