Coconote
AI notes
AI voice & video notes
Try for free
📏
Graphing Conic Sections: Circles, Ellipses, Parabolas, and Hyperbolas
Jul 18, 2024
Graphing Conic Sections: Circles, Ellipses, Parabolas, and Hyperbolas
Introduction
Focus on graphing conic sections: circles, ellipses, parabolas, hyperbolas.
Identify conic sections from equations and convert to standard form.
Graphing Circles
Standard Equation
:
\( (x-h)^2 + (y-k)^2 = r^2 \)
Center: (h, k)
Radius: r
Examples
:
\( x^2 + y^2 = 9 \)
Center: (0,0)
Radius: 3
\( (x-3)^2 + (y+4)^2 = 16 \)
Center: (3, -4)
Radius: 4
\( (x+2)^2 + (y-3)^2 = 4 \)
Center: (-2, 3)
Radius: 2
Graphing Ellipses
Standard Equation
:
Horizontal: \( \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \)
Vertical: \( \frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1 \)
a is always greater than b
Key Points
:
Major axis: 2a
Minor axis: 2b
Vertices at \( (h \pm a, k) \) or \( (h, k \pm a) \)
Foci: \( c^2 = a^2 - b^2 \), \( (h \pm c, k) \) or \( (h, k \pm c) \)
Examples
:
\( \frac{x^2}{25} + \frac{y^2}{49} = 1 \)
Center: (0, 0)
Major axis: 14
Minor axis: 10
Foci: \( (\pm 2\sqrt{6}, 0) \)
\( \frac{(x-2)^2}{16} + \frac{(y+3)^2}{9} = 1 \)
Center: (2, -3)
Major axis: 8
Minor axis: 6
Foci: \( (2 \pm \sqrt{7}, -3) \)
\( \frac{(x+1)^2}{9} + \frac{(y-2)^2}{25} = 1 \)
Center: (-1, 2)
Major axis: 10
Minor axis: 6
Foci: \( (-1, 2 \pm \sqrt{16}) \)
Graphing Hyperbolas
Standard Equation
:
Horizontal: \( \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \)
Vertical: \( \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1 \)
Key Points
:
Vertices at \( (h \pm a, k) \) or \( (h, k \pm a) \)
Foci: \( c^2 = a^2 + b^2 \), \( (h \pm c, k) \) or \( (h, k \pm c) \)
Asymptotes: \( y = k \pm \frac{b}{a}(x-h) \) or \( y = k \pm \frac{a}{b}(x-h) \)
Examples
:
\( \frac{x^2}{9} - \frac{y^2}{4} = 1 \)
Center: (0, 0)
Vertices: \( (\pm 3, 0) \)
Foci: \( (\pm \sqrt{13}, 0) \)
Asymptotes: \( y = \pm \frac{2}{3}x \)
\( \frac{(x+1)^2}{25} - \frac{(y-2)^2}{16} = 1 \)
Center: (-1, 2)
Vertices: \( (-6, 2), (4, 2) \)
Foci: \( (-1 \pm \sqrt{41}, 2) \)
Asymptotes: \( y-2 = \pm \frac{4}{5}(x+1) \)
\( \frac{(y-2)^2}{4} - \frac{(x+3)^2}{9} = 1 \)
Center: (-3, 2)
Vertices: \( (-3, 4), (-3, 0) \)
Foci: \( (-3, 2 \pm \sqrt{13}) \)
Asymptotes: \( y-2 = \pm \frac{2}{3}(x+3) \)
Graphing Parabolas
Standard Equation
:
Horizontal: \( (y-k)^2 = 4p(x-h) \)
Vertical: \( (x-h)^2 = 4p(y-k) \)
Key Points
:
Opens right if p > 0, left if p < 0
Opens up if p > 0, down if p < 0
Focus: (h+p, k) or (h, k+p)
Directrix: x=h-p or y=k-p
Examples
:
\( y^2 = 8x \)
Vertex: (0, 0)
Focus: (2, 0)
Directrix: x=-2
\( (y-2)^2 = 4(x-3) \)
Vertex: (3, 2)
Focus: (4, 2)
Directrix: x=2
\( (x+1)^2 = -2(y-3) \)
Vertex: (-1, 3)
Focus: (-1, 5.5)
Directrix: y=2.5
Identifying Conic Sections from General Equations
Circle
: \( A = C \)
Example: \( x^2 + 4y^2 + 8x = 0 \)
Ellipse
: \( A \neq C \), both positive
Example: \( 4x^2 + 25y^2 = 100 \)
Hyperbola
: \( A \) positive, \( C \) negative (or vice versa)
Example: \( 4x^2 - 9y^2 = 36 \)
Parabola
: Only one squared term
Example: \( x^2 - 8x = 4y \)
Converting to Standard Form
Circles
:
Example: \( 2x^2 + 8x + 2y^2 + 4y = 6 \)
Group like terms: \( 2(x^2 + 4x) + 2(y^2 + 2y) = 6 \)
Complete the square: \( 2((x+2)^2 - 4) + 2((y+1)^2 - 1) = 6 \)
Simplify: \( (x+2)^2 + (y+1)^2 = 8 \)
Ellipses
:
Example: \( 4x^2 + 25y^2 - 24x + 100y = -36 \)
Group like terms: \( 4(x^2 - 6x) + 25(y^2 + 4y) = 36 \)
Complete the square: \( 4((x-3)^2 - 9) + 25((y+2)^2 - 4) = 36 \)
Simplify: \( \frac{(x-3)^2}{25} + \frac{(y+2)^2}{9} = 1 \)
Hyperbolas
:
Example: \( 4x^2 - 9y^2 - 16x + 54y = 101 \)
Group like terms: \( 4(x^2 - 4x) - 9(y^2 - 6y) = 36 \)
Complete the square: \( 4((x-2)^2 - 4) - 9((y-3)^2 - 9) = 36 \)
Simplify: \( \frac{(x-2)^2}{9} - \frac{(y-3)^2}{4} = 1 \)
Parabolas
:
Example: \( x^2 + 6x = 4y - 1 \)
Complete the square: \( (x+3)^2 - 9 = 4y - 1 \)
Simplify: \( (x+3)^2 = 4(y-1/4) \)
Summary of Equations
Circle
:
\( (x-h)^2 + (y-k)^2 = r^2 \)
Ellipse
:
\( \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \)
Hyperbola
:
\( \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \)
Parabola
:
\( (x-h)^2 = 4p(y-k) \)
\( (y-k)^2 = 4p(x-h) \)
Key Points
Circle
: Center (h, k), Radius r
Ellipse
: Major/Minor Axis, Focus, Vertices
Hyperbola
: Asymptotes, Vertices, Focus
Parabola
: Focus, Directrix, Opens Direction
Final Notes
Remember Pythagorean relationships for foci in ellipses and hyperbolas.
Identify conic sections by their equations.
Practice completing square techniques for converting to standard form.
📄
Full transcript