Jul 16, 2024
2 * AD² + CD² = AB² + AC²
2 * BE² + AE² = AB² + BC²
2 * CF² + BF² = AC² + BC²
3 * (AB² + BC² + CA²) = 4 * (AD² + BE² + CF²)
(AG² + BG² + CG²) / (AB² + BC² + CA²) = 1/3
Perimeter < 4/3 * Sum of medians > Sum of medians
If the lengths of the medians are given, the area of the triangle formed by these medians is 3/4 of the area of the original triangle.
Example: For medians 9, 12, and 15:
Imaginary triangle area = 1/2 * 9 * 12 = 54
Original Triangle Area = 54 * 4/3 = 72
d² = R * (R - 2r)
R = Circumradiusr = InradiusR/r ⼠2Heron's Formula:
Area = â(s(s-a)(s-b)(s-c)), where s = (a+b+c)/2
Base & Height:
Area = 1/2 * base * height
Using Inradius:
Area = r * s
Using Circumradius:
Area = (ABC) / (4R)
Using Sine Rule:
Area = 1/2 * a * b * sin(θ)