Jul 12, 2024
sonar_data.csv (link provided in the video description)import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
sonar_data = pd.read_csv(path_to_csv_file, header=None)
data.describe()data[60].value_counts()data.groupby(60).mean()X = data.drop(columns=60)
Y = data[60]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.1, stratify=Y, random_state=1)
model = LogisticRegression()
model.fit(X_train, Y_train)
training_predictions = model.predict(X_train)
training_accuracy = accuracy_score(Y_train, training_predictions)
print(f"Training Accuracy: {training_accuracy}")
test_predictions = model.predict(X_test)
test_accuracy = accuracy_score(Y_test, test_predictions)
print(f"Test Accuracy: {test_accuracy}")
def predictive_system(data_example):
... # Convert data example to numpy array
... # Reshape data to match model input
... # Predict using logistic regression model
return prediction
sample_input = [...] # Some example data
prediction = predictive_system(sample_input)
if prediction[0] == 'R':
print("The object is a Rock")
else:
print("The object is a Mine")