🔺

Essential Trigonometry Concepts and Examples

May 24, 2025

Trigonometry Basics Lecture Notes

Introduction to Trigonometry

  • Focus: Understanding basic trigonometric ratios using the acronym SOHCAHTOA for right triangles.

SOHCAHTOA Explained

  • S (Sine)
    • Sine ( \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} )
  • C (Cosine)
    • Cosine ( \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} )
  • T (Tangent)
    • Tangent ( \theta = \frac{\text{Opposite}}{\text{Adjacent}} )

Example 1: Right Triangle Ratios

  • Triangle with sides 3, 4, 5
  • Sine ( \theta = \frac{4}{5} )
  • Cosine ( \theta = \frac{3}{5} )
  • Tangent ( \theta = \frac{4}{3} )
  • Tangent can also be calculated as ( \frac{\text{Sine}}{\text{Cosine}} )

Example 2: Right Triangle with Missing Side

  • Given sides 5, 12; find hypotenuse using Pythagorean theorem:
    • ( c^2 = a^2 + b^2 )
    • ( c = 13 )
  • Sine ( \theta = \frac{5}{13} )
  • Cosine ( \theta = \frac{12}{13} )
  • Tangent ( \theta = \frac{5}{12} )

Special Right Triangles

  • Memorize common triangles:
    • 3-4-5
    • 5-12-13
    • 8-15-17
    • 7-24-25
    • 9-40-41 (less common)

Example 3: Special Right Triangle

  • Given sides 14, 50; find missing side using 7-24-25 triangle (doubled):
    • Missing side is 48
  • Sine ( \theta = \frac{14}{50} = \frac{7}{25} )
  • Cosine ( \theta = \frac{48}{50} = \frac{24}{25} )
  • Tangent ( \theta = \frac{14}{48} = \frac{7}{24} )

Reciprocal Trig Functions

  • Cosecant (csc) = ( \frac{1}{\text{Sine}} )
  • Secant (sec) = ( \frac{1}{\text{Cosine}} )
  • Cotangent (cot) = ( \frac{1}{\text{Tangent}} )

Reference Angles and Quadrants

  • Determine in which quadrant an angle lies:
    • Quadrant 1: All positive
    • Quadrant 2: Sine positive
    • Quadrant 3: Tangent positive
    • Quadrant 4: Cosine positive
  • Reference Angle: Acute angle formed with the x-axis

Example Problems

  • Find Cosine and Tangent given Sine:
    • Example: ( \sin \theta = \frac{8}{17} )
    • Use reference angles and the Pythagorean theorem to find missing sides

Converting Between Degrees and Radians

  • ( \pi ) radians = 180 degrees
  • Use conversion factor ( \frac{180}{\pi} ) or ( \frac{\pi}{180} )

Evaluating Trigonometric Functions without a Calculator

  • Use special triangles or the unit circle
  • 30-60-90 Triangle
    • Sine 30 = ( \frac{1}{2} )
    • Cosine 30 = ( \frac{\sqrt{3}}{2} )
  • 45-45-90 Triangle
    • Cosine 45 = ( \frac{\sqrt{2}}{2} )

Summary

  • Trigonometry relies heavily on understanding triangle properties and the relationship between angles and sides.
  • Familiarity with special triangles and trigonometric identities is essential.

Additional Resources

  • Check out the recommended trigonometry playlist for more examples and detailed explanations.