Trig Cheat Sheet Notes
Definition of the Trig Functions
Right Triangle Definition
- Assumes: (0 < \theta < \pi/2) or (0 < \theta < 90^\circ).
- Definitions:
- ( \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} )
- ( \csc(\theta) = \frac{\text{hypotenuse}}{\text{opposite}} )
- ( \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} )
- ( \sec(\theta) = \frac{\text{hypotenuse}}{\text{adjacent}} )
- ( \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} )
- ( \cot(\theta) = \frac{\text{adjacent}}{\text{opposite}} )
Unit Circle Definition
- ( \theta ) is any angle.
- Definitions:
- ( \sin(\theta) = y )
- ( \csc(\theta) = \frac{1}{y} )
- ( \cos(\theta) = x )
- ( \sec(\theta) = \frac{1}{x} )
- ( \tan(\theta) = \frac{y}{x} )
- ( \cot(\theta) = \frac{x}{y} )
Facts and Properties
Domain
- ( \sin(\theta) ) and ( \cos(\theta) ): ( \theta ) can be any angle.
- ( \tan(\theta) ) and ( \sec(\theta) ): Undefined for ( \theta = \frac{\pi}{2} + n\pi ), ( n = 0, 1, 2, \ldots )
- ( \csc(\theta) ) and ( \cot(\theta) ): Undefined for ( \theta = n\pi ), ( n = 0, 1, 2, \ldots )
Period
- ( \sin(\theta), \cos(\theta), \csc(\theta), \sec(\theta) ): Period = (2\pi)
- ( \tan(\theta), \cot(\theta) ): Period = (\pi)
Range
- ( -1 \leq \sin(\theta) \leq 1
- ( -1 \leq \cos(\theta) \leq 1
- ( -\infty < \tan(\theta) < \infty
- ( -\infty < \cot(\theta) < \infty
- ( \sec(\theta) \geq 1 \text{ or } \sec(\theta) \leq -1
- ( \csc(\theta) \geq 1 \text{ or } \csc(\theta) \leq -1
Formulas and Identities
Tangent and Cotangent Identities
- ( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} )
- ( \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} )
Reciprocal Identities
- ( \csc(\theta) = \frac{1}{\sin(\theta)} )
- ( \sec(\theta) = \frac{1}{\cos(\theta)} )
- ( \cot(\theta) = \frac{1}{\tan(\theta)} )
Pythagorean Identities
- ( \sin^2(\theta) + \cos^2(\theta) = 1 )
- ( \tan^2(\theta) + 1 = \sec^2(\theta) )
- ( 1 + \cot^2(\theta) = \csc^2(\theta) )
Even/Odd Formulas
- Even: ( \cos(-\theta) = \cos(\theta), \sec(-\theta) = \sec(\theta) )
- Odd: ( \sin(-\theta) = -\sin(\theta), \csc(-\theta) = -\csc(\theta) )
- ( \tan(-\theta) = -\tan(\theta), \cot(-\theta) = -\cot(\theta) )
Periodic Formulas
- ( \sin(\theta + 2\pi n) = \sin(\theta) )
- ( \cos(\theta + 2\pi n) = \cos(\theta) )
- ( \tan(\theta + \pi n) = \tan(\theta) )
Degrees to Radians Conversion
- ( 180^\circ = \pi \text{ radians} )
- ( t = \frac{x \pi}{180} )
- ( x = \frac{180t}{\pi} )
Double Angle Formulas
- ( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) )
- ( \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) )
- ( \tan(2\theta) = \frac{2 \tan(\theta)}{1 - \tan^2(\theta)} )
Half Angle Formulas
- ( \sin(\frac{\theta}{2}) = \pm \sqrt{\frac{1 - \cos(\theta)}{2}} )
- ( \cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1 + \cos(\theta)}{2}} )
- ( \tan(\frac{\theta}{2}) = \frac{\sqrt{1 - \cos(\theta)}}{\sqrt{1 + \cos(\theta)}} )
Sum and Difference Formulas
- ( \sin(\alpha \pm \beta) = \sin(\alpha) \cos(\beta) \pm \cos(\alpha) \sin(\beta) )
- ( \cos(\alpha \pm \beta) = \cos(\alpha) \cos(\beta) \mp \sin(\alpha) \sin(\beta) )
- ( \tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)} )
Product to Sum Formulas
- ( \sin(A) \sin(B) = \frac{1}{2} [\cos(A - B) - \cos(A + B)] )
- ( \cos(A) \cos(B) = \frac{1}{2} [\cos(A - B) + \cos(A + B)] )
Sum to Product Formulas
- ( \sin(A) + \sin(B) = 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) )
- ( \cos(A) + \cos(B) = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) )
Cofunction Formulas
- ( \sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta) )
- ( \tan\left(\frac{\pi}{2} - \theta\right) = \cot(\theta) )
Inverse Trig Functions
Definition
- ( y = \sin^{-1}(x) \Leftrightarrow x = \sin(y) )
- ( y = \cos^{-1}(x) \Leftrightarrow x = \cos(y) )
- ( y = \tan^{-1}(x) \Leftrightarrow x = \tan(y) )
Domain and Range
- ( y = \sin^{-1}(x) ): Domain ([-1, 1]), Range ([-\frac{\pi}{2}, \frac{\pi}{2}])
- ( y = \cos^{-1}(x) ): Domain ([-1, 1]), Range ([0, \pi])
- ( y = \tan^{-1}(x) ): Domain ((-\infty, \infty)), Range ((-\frac{\pi}{2}, \frac{\pi}{2}))
Inverse Properties
- ( \cos(\cos^{-1}(x)) = x )
- ( \sin(\sin^{-1}(x)) = x )
- ( \tan(\tan^{-1}(x)) = x )
Alternate Notation
- ( \sin^{-1}(x) = \text{arcsin}(x) )
- ( \cos^{-1}(x) = \text{arccos}(x) )
- ( \tan^{-1}(x) = \text{arctan}(x) )
Law of Sines, Cosines, and Tangents
Law of Sines
- ( \frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c} )
Law of Cosines
- ( a^2 = b^2 + c^2 - 2bc \cos(A) )
Mollweide's Formula
- ( \frac{a + b}{c} = \frac{\cos\left(\frac{A - B}{2}\right)}{\sin\left(\frac{C}{2}\right)} )
Law of Tangents
- ( \frac{a - b}{a + b} = \tan\left(\frac{A - B}{2}\right) \cot\left(\frac{A + B}{2}\right) )
Note: These notes summarize the key elements of trigonometric identities and functions useful for mathematical problems, derived from Paul Dawkins' Trig Cheat Sheet available at tutorial.math.lamar.edu.