Jul 23, 2024
Coefficient matrix A:
$$\begin{bmatrix} 2 & -1 \ -1 & 2 \end{bmatrix}$$
Unknowns vector x:
$$\begin{bmatrix} x \ y \end{bmatrix}$$
Right-hand side vector b:
$$\begin{bmatrix} 0 \ 3 \end{bmatrix}$$
Columns:
First column:
$$\begin{bmatrix} 2 \ -1 \end{bmatrix}$$
Second column:
$$\begin{bmatrix} -1 \ 2 \end{bmatrix}$$
Objective: Find linear combination of columns to produce vector b:
$$1 \cdot \begin{bmatrix} 2 \ -1 \end{bmatrix} + 2 \cdot \begin{bmatrix} -1 \ 2 \end{bmatrix} = \begin{bmatrix} 0 \ 3 \end{bmatrix}$$
Key Idea: Linear combinations of columns