🧮

Understanding Indefinite Integration Techniques

Apr 23, 2025

Indefinite Integration Lecture Notes

Introduction

  • Discussed indefinite integrals and anti-derivatives.
  • Emphasized the necessity of adding a constant C when finding an antiderivative.

Anti-derivatives of Constants

  • Integral of 4 dx:
    • Result: 4x + C
  • Integral of pi dy:
    • Result: πy + C
  • Integral of e dz:
    • Result: ez + C

Variable Raised to Constant

  • Formula:
    • ∫xⁿ dx = xⁿ⁺¹/(n+1) + C
  • Example:
    • ∫x² dx = x³/3 + C
  • Example:
    • ∫8x³ dx = 2x⁴ + C

Polynomial Functions

  • Integrate each term separately.
  • Example: x² - 5x + 6
    • Result: x³/3 - 5x²/2 + 6x + C

Square Root Functions

  • Rewrite using fractional exponents.
  • Example: ∫√x dx = 2/3 x^(3/2) + C

U-Substitution

  • Technique used for substitution to simplify integration.
  • Example: ∫x² sin(x³) dx
    • Let u = x³ and differentiate to find du

Integration by Parts

  • Formula: ∫u dv = uv - ∫v du
  • Apply when the product of functions cannot be easily integrated using substitution.
  • Example: ∫x e^(4x) dx
    • Let u = x and dv = e^(4x) dx

Trigonometric Integrals

  • Example: ∫cos(x) dx = sin(x) + C
  • Example: ∫sin(x) dx = -cos(x) + C

Exponential Functions

  • Example: ∫e^(4x) dx = e^(4x)/4 + C

Special Techniques

  • Trigonometric Substitution used for integrals involving √(1 + x²) or √(1 - x²).
  • Inverse trigonometric functions used with substitution for expressions like 1/(1 + x²).

Summary

  • Reviewed multiple integration techniques including power rule, substitution, integration by parts, and trigonometric substitution.
  • Emphasized transformation of integrals to more workable forms.