Coconote
AI notes
AI voice & video notes
Export note
Try for free
Exploring Functions in Pre-Calculus
Oct 8, 2024
Pre-Calculus: Understanding Functions
Introduction
Key topic: Functions
How to graph functions
Domain and range of functions
Overview of parent functions and their characteristics
Basic Parent Functions
Linear Function: $y = x$
Graph
: Straight line through the origin
Domain
: $(-\infty, \infty)$
Range
: $(-\infty, \infty)$
Quadratic Function: $y = x^2$
Graph
: Parabola opening upwards
Domain
: $(-\infty, \infty)$
Range
: $[0, \infty)$
Cubic Function: $y = x^3$
Graph
: S-shaped curve
Domain
: $(-\infty, \infty)$
Range
: $(-\infty, \infty)$
Square Root Function: $y = \sqrt{x}$
Graph
: Curve starting at the origin
Domain
: $[0, \infty)$
Range
: $[0, \infty)$
Cube Root Function: $y = \sqrt[3]{x}$
Graph
: S-shaped curve through the origin
Domain
: $(-\infty, \infty)$
Range
: $(-\infty, \infty)$
Absolute Value Function: $y = |x|$
Graph
: V-shaped graph
Domain
: $(-\infty, \infty)$
Range
: $[0, \infty)$
Rational Function: $y = \frac{1}{x}$
Graph
: Hyperbola with asymptotes
Domain
: $(-\infty, 0) \cup (0, \infty)$
Range
: $(-\infty, 0) \cup (0, \infty)$
Exponential Function: $y = e^x$
Graph
: Exponential growth
Domain
: $(-\infty, \infty)$
Range
: $(0, \infty)$
Logarithmic Function: $y = \ln(x)$
Graph
: Logarithmic growth
Domain
: $(0, \infty)$
Range
: $(-\infty, \infty)$
Trigonometric Functions
Sine Function
Graph
: Sinusoidal wave
Domain
: $(-\infty, \infty)$
Range
: $[-1, 1]$
Cosine Function
Graph
: Sinusoidal wave, starting at 1
Domain
: $(-\infty, \infty)$
Range
: $[-1, 1]$
Tangent Function
Graph
: Repeated pattern with vertical asymptotes
Domain
: $x \neq \frac{\pi}{2} + n\pi$
Range
: $(-\infty, \infty)$
Transformations of Functions
Vertical Stretch/Compression
: Multiplier outside function
Horizontal Stretch/Compression
: Multiplier inside function
Translations
:
Horizontal: $f(x - c)$ shifts right
Vertical: $f(x) + c$ shifts up
Reflections
:
Over x-axis: $-f(x)$
Over y-axis: $f(-x)$
Composite Functions
Definition
: $f(g(x))$ - function inside a function
Example Calculation
: Substituting one function into another
Inverse Functions
Finding Inverse
: Swap x and y, solve for y
Verification
: $f(g(x)) = x$ and $g(f(x)) = x$
Graph
: Reflects over the line $y = x$
Conclusion
For more resources, visit
video-tutor.net
Topics include calculus, algebra, chemistry, and physics.
📄
Full transcript