Exploring Functions in Pre-Calculus

Oct 8, 2024

Pre-Calculus: Understanding Functions

Introduction

  • Key topic: Functions
    • How to graph functions
    • Domain and range of functions
  • Overview of parent functions and their characteristics

Basic Parent Functions

Linear Function: $y = x$

  • Graph: Straight line through the origin
  • Domain: $(-\infty, \infty)$
  • Range: $(-\infty, \infty)$

Quadratic Function: $y = x^2$

  • Graph: Parabola opening upwards
  • Domain: $(-\infty, \infty)$
  • Range: $[0, \infty)$

Cubic Function: $y = x^3$

  • Graph: S-shaped curve
  • Domain: $(-\infty, \infty)$
  • Range: $(-\infty, \infty)$

Square Root Function: $y = \sqrt{x}$

  • Graph: Curve starting at the origin
  • Domain: $[0, \infty)$
  • Range: $[0, \infty)$

Cube Root Function: $y = \sqrt[3]{x}$

  • Graph: S-shaped curve through the origin
  • Domain: $(-\infty, \infty)$
  • Range: $(-\infty, \infty)$

Absolute Value Function: $y = |x|$

  • Graph: V-shaped graph
  • Domain: $(-\infty, \infty)$
  • Range: $[0, \infty)$

Rational Function: $y = \frac{1}{x}$

  • Graph: Hyperbola with asymptotes
  • Domain: $(-\infty, 0) \cup (0, \infty)$
  • Range: $(-\infty, 0) \cup (0, \infty)$

Exponential Function: $y = e^x$

  • Graph: Exponential growth
  • Domain: $(-\infty, \infty)$
  • Range: $(0, \infty)$

Logarithmic Function: $y = \ln(x)$

  • Graph: Logarithmic growth
  • Domain: $(0, \infty)$
  • Range: $(-\infty, \infty)$

Trigonometric Functions

Sine Function

  • Graph: Sinusoidal wave
  • Domain: $(-\infty, \infty)$
  • Range: $[-1, 1]$

Cosine Function

  • Graph: Sinusoidal wave, starting at 1
  • Domain: $(-\infty, \infty)$
  • Range: $[-1, 1]$

Tangent Function

  • Graph: Repeated pattern with vertical asymptotes
  • Domain: $x \neq \frac{\pi}{2} + n\pi$
  • Range: $(-\infty, \infty)$

Transformations of Functions

  • Vertical Stretch/Compression: Multiplier outside function
  • Horizontal Stretch/Compression: Multiplier inside function
  • Translations:
    • Horizontal: $f(x - c)$ shifts right
    • Vertical: $f(x) + c$ shifts up
  • Reflections:
    • Over x-axis: $-f(x)$
    • Over y-axis: $f(-x)$

Composite Functions

  • Definition: $f(g(x))$ - function inside a function
  • Example Calculation: Substituting one function into another

Inverse Functions

  • Finding Inverse: Swap x and y, solve for y
  • Verification: $f(g(x)) = x$ and $g(f(x)) = x$
  • Graph: Reflects over the line $y = x$

Conclusion

  • For more resources, visit video-tutor.net
  • Topics include calculus, algebra, chemistry, and physics.