Aug 2, 2024
Substituting (dV) into (dM): [ dM = \rho \cdot 2\pi r L dr ]
Inertia formula: [ I = \int_{R1}^{R2} r^2 dM ]
Substitute (dM) into the inertia formula: [ I = \int_{R1}^{R2} r^2 \cdot \rho \cdot 2\pi r L dr ]
Moving constants out of the integral: [ I = 2\pi \rho L \int_{R1}^{R2} r^3 dr ]
Evaluating the integral: [ \int_{R1}^{R2} r^3 dr = \left. \frac{r^4}{4} \right|_{R1}^{R2} = \frac{R2^4}{4} - \frac{R1^4}{4} ]
Substituting back into the inertia equation: [ I = \frac{2\pi \rho L}{4} (R2^4 - R1^4) ]
Simplifying: [ I = \frac{\pi \rho L}{2} (R2^4 - R1^4) ]
Substituting the mass into the inertia equation: [ I = \frac{\pi \rho L}{2} (R2^4 - R1^4) = \frac{M}{\pi \rho (R2^2 - R1^2) L} \cdot \frac{\pi \rho L}{2} (R2^4 - R1^4) ]
Simplifying: [ I = \frac{M}{2} (R2^2 + R1^2) ]