Coconote
AI notes
AI voice & video notes
Try for free
🌀
Mastering the Unit Circle Basics
Apr 30, 2025
Memorizing the Unit Circle
Introduction
Focus on memorizing the Unit Circle and its components.
Importance of understanding angles in radians.
Angles in Radians
0 degrees
= 0 radians.
Full Circle
= 2Ï€ radians.
Half Circle
= π radians.
Quarter Circle
= π/2 radians.
Breakdown:
1Ï€/4, 2Ï€/4 (Ï€/2), 3Ï€/4, 4Ï€/4 (Ï€)
5Ï€/4, 6Ï€/4 (3Ï€/2), 7Ï€/4, 8Ï€/4 (2Ï€)
Angles in Parts
Divide the circle into 8 equal parts.
Additional angles:
1Ï€/6, 2Ï€/6 (Ï€/3), 3Ï€/6 (Ï€/2)
4Ï€/6 (2Ï€/3), 5Ï€/6, 6Ï€/6 (Ï€)
7Ï€/6, 8Ï€/6 (4Ï€/3), 9Ï€/6 (3Ï€/2)
10Ï€/6 (5Ï€/3), 11Ï€/6
Values on Axes
X-axis
: Right (x=1), Left (x=-1)
Y-axis
: Top (y=1), Bottom (y=-1), Center (x=0, y=0)
Quadrants
Quadrant I
: x and y positive.
Quadrant II
: x negative, y positive.
Quadrant III
: x and y negative.
Quadrant IV
: x positive, y negative.
Values for Key Angles
Quadrant I (increase x from 0 to 1):
x: 1/2, √2/2, √3/2, 1
y: 0, √1/2, √2/2, √3/2, 1
Quadrant II: Reflect values of Quadrant I, x is negative.
Quadrant III: Both x and y negative.
Quadrant IV: x positive, y negative.
Converting Radian to Degrees
Ï€ = 180 degrees.
Conversion:
π/6 = 30°
π/4 = 45°
π/3 = 60°
π/2 = 90°
2π/3 = 120°
3π/4 = 135°
5π/6 = 150°
π = 180°
7π/6 = 210°
5π/4 = 225°
4π/3 = 240°
3π/2 = 270°
5π/3 = 300°
7π/4 = 315°
11π/6 = 330°
Using the Unit Circle for Trig Functions
Sine
: Use y-value.
Example: sine(π/3) = √3/2
Cosine
: Use x-value.
Example: cosine(7π/6) = -√3/2
Tangent
: y/x or sine/cosine.
Example: tan(π/3) = √3
Conclusion
Recap of the techniques to memorize and utilize the unit circle.
Encouragement to comment, like, and subscribe for more content.
📄
Full transcript