📈

Understanding Exponential Graph Transformations

Jan 22, 2025

Transformations of Exponential Graphs

Types of Transformations

Horizontal and Vertical Shifts

  • Formula: Graph of $f(x + h) + k$ is $f(x)$ shifted left by $h$ and up by $k$.
    • Negative $h$: Shift right.
    • Positive $h$: Shift left.
    • Positive $k$: Shift up.
    • Negative $k$: Shift down.
  • Example: $G(x) = b^{x+h} + k$
    • Horizontal asymptote at $y = k$.
    • Convenient point when exponent is 0: $(-h, k+1)$.
    • Another point when exponent is 1: $(-h+1, b+k)$.

Example of Shift

  • Function: $f(x) = 2^{x+3} - 1$
    • $h = 3$, shift left 3 units.
    • $k = -1$, shift down 1 unit.
    • Plot points:
      • $(-3, 0)$ when $x = -3$.
      • $(-2, 1)$ when $x = -2$.
      • $y$-intercept $(0, 7)$ when $x = 0$.
    • Horizontal asymptote: $y = -1$.

Vertical Stretches

  • Formula: Graph of $a \times f(x)$ is $f(x)$ stretched vertically by $a$.
    • $a > 1$: True stretching (upward).
    • $0 < a < 1$: Compression.
  • Example: $G(x) = a \times b^x$
    • Horizontal asymptote remains $y = 0$.
    • Points: $(0, a)$ and $(1, a \times b)$.

Example of Vertical Stretch

  • Function: $f(x) = 3^x$
    • Stretch by $a = 2$: Points are $(0, 2)$ and $(1, 6)$.
    • Stretch by $a = 3$: Points are $(0, 3)$.
    • Adding 1 shifts horizontal asymptote to $y = 1$.

Reflections

  • Reflection over Y-axis: $f(-x)$ reflects over the y-axis.
  • Reflection over X-axis: $-f(x)$ reflects over the x-axis.

Example of Reflection

  • Function: $f(x) = -2 \times 3^{-x}$
    • Reflecting over both axes.
    • Convenient points:
      • $(0, -2)$ when $x = 0$.
      • $(-1, -6)$ when $x = -1$.
    • Horizontal asymptote: y = 0.

Final Note

  • Understanding these transformations helps in sketching and predicting the behavior of exponential graphs in various transformations.