Coconote
AI notes
AI voice & video notes
Try for free
📈
Understanding Exponential Graph Transformations
Jan 22, 2025
Transformations of Exponential Graphs
Types of Transformations
Horizontal and Vertical Shifts
Formula
: Graph of $f(x + h) + k$ is $f(x)$ shifted left by $h$ and up by $k$.
Negative $h$: Shift right.
Positive $h$: Shift left.
Positive $k$: Shift up.
Negative $k$: Shift down.
Example
: $G(x) = b^{x+h} + k$
Horizontal asymptote at $y = k$.
Convenient point when exponent is 0: $(-h, k+1)$.
Another point when exponent is 1: $(-h+1, b+k)$.
Example of Shift
Function
: $f(x) = 2^{x+3} - 1$
$h = 3$, shift left 3 units.
$k = -1$, shift down 1 unit.
Plot points:
$(-3, 0)$ when $x = -3$.
$(-2, 1)$ when $x = -2$.
$y$-intercept $(0, 7)$ when $x = 0$.
Horizontal asymptote: $y = -1$.
Vertical Stretches
Formula
: Graph of $a \times f(x)$ is $f(x)$ stretched vertically by $a$.
$a > 1$: True stretching (upward).
$0 < a < 1$: Compression.
Example
: $G(x) = a \times b^x$
Horizontal asymptote remains $y = 0$.
Points: $(0, a)$ and $(1, a \times b)$.
Example of Vertical Stretch
Function
: $f(x) = 3^x$
Stretch by $a = 2$: Points are $(0, 2)$ and $(1, 6)$.
Stretch by $a = 3$: Points are $(0, 3)$.
Adding 1 shifts horizontal asymptote to $y = 1$.
Reflections
Reflection over Y-axis
: $f(-x)$ reflects over the y-axis.
Reflection over X-axis
: $-f(x)$ reflects over the x-axis.
Example of Reflection
Function
: $f(x) = -2 \times 3^{-x}$
Reflecting over both axes.
Convenient points:
$(0, -2)$ when $x = 0$.
$(-1, -6)$ when $x = -1$.
Horizontal asymptote: y = 0.
Final Note
Understanding these transformations helps in sketching and predicting the behavior of exponential graphs in various transformations.
📄
Full transcript