Applying Generative Adversarial Networks (GANs) in Python using Keras

Jun 28, 2024

Lecture: Applying Generative Adversarial Networks (GANs) in Python using Keras

Overview

  • Implementation of GANs in Python using Keras
  • Cover both training and testing parts
  • Quick summary of GANs:
    • Generative: Generating new data/images
    • Adversarial: Generator and discriminator compete
    • Objective: Generator creates realistic fake data; Discriminator distinguishes real vs fake

Implementation Steps

  1. Create Random Seeds - Generate random noise
  2. Generator Network
    • Define the architecture
    • Use existing architectures (research, publications)
  3. Discriminator Network
    • Receive real images and classify real and fake images
  4. Training the Networks
    • Define loss for both networks
    • Retrain iteratively

Version Information & Setup

  • Python: 3.5.5
  • Keras: 2.0.8
  • TensorFlow: 1.4
  • GPU: NVIDIA Quadro K5000 (importance of compatible versions)

Importing Necessary Libraries

  • Keras layers: Input, Dense, Reshape, Flatten
  • TensorFlow as tf

Image and Data Preparation

  • Dataset: MNIST
    • Images: 28x28x1 (grayscale)
    • Labels: Handwritten digits (0-9)
  • Steps:
    • Download dataset (Keras.datasets or local download)
    • Visualize images

Building the GAN

Generator Network

  • Input: Random noise (latent vector of size 100)
  • Layers: Dense, BatchNormalization, LeakyReLU
  • Output: Image (28x28x1)

Discriminator Network

  • Input: Image
  • Layers: Similar structure (Dense layers)
  • Output: Real or fake probability (binary classifier)

Training Process

  • Parameters:
    • Epochs, Batch Size, Save Interval
  • Steps:
    • Load real images (MNIST)
    • Normalize and reshape data
  • Discriminator Training:
    • Train on real and fake images
    • Calculate and track losses
  • Generator Training:
    • Generate fake images and trick discriminator
    • Track generator loss
  • Print and Save results every specified intervals

Main Code Structure

  • Define Optimizer: Adam
  • Compile Models: Discriminator and Generator
  • Combine Models: Attach generator to discriminator
  • Training Loop:
    • Epochs: Train discriminator and generator alternatively
    • Print loss and accuracy for each epoch
    • Save generated images at intervals

Post-training

  • Generating Images:
    • Load saved generator model
    • Generate and visualize fake images
  • Example Outputs: Showcases gradual improvement over epochs

Conclusion

  • Code structure and step-by-step explanation

  • Emphasis on practice by running code and experimenting with parameters

  • Encouragement to refer to additional resources

  • Future Topics: Advanced GAN techniques and applications

References and Resources

  • Keras documentation
  • TensorFlow guides
  • Research papers on GANs