Coconote
AI notes
AI voice & video notes
Export note
Try for free
1.2 Question 6: Integration Techniques and Anti-Derivatives
Aug 24, 2024
Calculus Lecture Notes: Integration and Anti-Derivatives
Key Topic: Finding the Anti-Derivative
Introduction
Objective
: Find the anti-derivative of a given function or evaluate the integral.
Example Function
: Integral of ( x^5 \cos(2x^6) \ dx ).
Step-by-Step Solution
1.
Factoring Constant Out
Factor out the constant 9 from the integral.
2.
U-Substitution
Let ( U = x^6 ).
Therefore, ( dU = 6x^5 \ dx ).
Rearrange to find ( x^5 dx ):
( \frac{1}{6} dU = x^5 dx ).
3.
Integrating with U
Substitute ( x^5 dx ) with ( \frac{1}{6} dU ).
Integral becomes: ( 9 \cdot \frac{1}{6} \int \cos(U) , dU ).
4.
Cosine Power Reduction
No direct integration formula for ( \cos(U) ).
Apply power-reducing formula:
( \cos^2(U) = \frac{1}{2} (1 + \cos(2U)) ).
5.
Applying Power Reduction
Factor out constants to simplify:
( \frac{3}{2} \cdot \int (1 + \cos(2U)) , dU ).
6.
Finding the Anti-Derivative
Integrate
:
( \int 1 , dU = U ).
( \int \cos(2U) , dU ) requires substitution.
7.
V-Substitution for Cosine
Let ( V = 2U ).
Then ( dV = 2 , dU ) or ( dU = \frac{1}{2} , dV ).
Integrate ( \cos(V) , dV ) gives ( \sin(V) ).
8.
Combine Results
( \frac{3}{4} U + \frac{3}{8} \sin(2U) + C ).
9.
Substituting Back to X
Substitute ( U = x^6 ) back:
Final anti-derivative:
( \frac{3}{4} x^6 + \frac{3}{8} \sin(2x^6) + C ).
Conclusion
Steps provide a structured approach to evaluating integrals with substitution and power reduction techniques.
Important to track and manage substitutions correctly for accurate integration.
📄
Full transcript