1.2 Question 6: Integration Techniques and Anti-Derivatives

Aug 24, 2024

Calculus Lecture Notes: Integration and Anti-Derivatives

Key Topic: Finding the Anti-Derivative

Introduction

  • Objective: Find the anti-derivative of a given function or evaluate the integral.
  • Example Function: Integral of ( x^5 \cos(2x^6) \ dx ).

Step-by-Step Solution

1. Factoring Constant Out

  • Factor out the constant 9 from the integral.

2. U-Substitution

  • Let ( U = x^6 ).
  • Therefore, ( dU = 6x^5 \ dx ).
  • Rearrange to find ( x^5 dx ):
    • ( \frac{1}{6} dU = x^5 dx ).

3. Integrating with U

  • Substitute ( x^5 dx ) with ( \frac{1}{6} dU ).
  • Integral becomes: ( 9 \cdot \frac{1}{6} \int \cos(U) , dU ).

4. Cosine Power Reduction

  • No direct integration formula for ( \cos(U) ).
  • Apply power-reducing formula:
    • ( \cos^2(U) = \frac{1}{2} (1 + \cos(2U)) ).

5. Applying Power Reduction

  • Factor out constants to simplify:
    • ( \frac{3}{2} \cdot \int (1 + \cos(2U)) , dU ).

6. Finding the Anti-Derivative

  • Integrate:
    • ( \int 1 , dU = U ).
    • ( \int \cos(2U) , dU ) requires substitution.

7. V-Substitution for Cosine

  • Let ( V = 2U ).
  • Then ( dV = 2 , dU ) or ( dU = \frac{1}{2} , dV ).
  • Integrate ( \cos(V) , dV ) gives ( \sin(V) ).

8. Combine Results

  • ( \frac{3}{4} U + \frac{3}{8} \sin(2U) + C ).

9. Substituting Back to X

  • Substitute ( U = x^6 ) back:
    • Final anti-derivative:
    • ( \frac{3}{4} x^6 + \frac{3}{8} \sin(2x^6) + C ).

Conclusion

  • Steps provide a structured approach to evaluating integrals with substitution and power reduction techniques.
  • Important to track and manage substitutions correctly for accurate integration.